找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
樓主: ISSUE
21#
發(fā)表于 2025-3-25 03:39:09 | 只看該作者
Generalized KP Hierarchy,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
22#
發(fā)表于 2025-3-25 07:49:55 | 只看該作者
https://doi.org/10.1007/978-3-540-78289-6 start for most of the material presented in this book. We do not develop a full-scale formalism, but rather show the connections of the Hirota bilinear identity to the context of boundary problems for the ˉ?-operator in the unit disc (or, more generally, some set of domains of the complex plane). T
23#
發(fā)表于 2025-3-25 14:21:31 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:58:32 | 只看該作者
Discrete-Time Neural Observers,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
26#
發(fā)表于 2025-3-26 02:17:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:36 | 只看該作者
28#
發(fā)表于 2025-3-26 11:36:20 | 只看該作者
https://doi.org/10.1007/978-94-011-4495-7Complex analysis; functional equation; mathematical physics; partial differential equation; topological
29#
發(fā)表于 2025-3-26 15:20:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:20 | 只看該作者
Discrete-Time Neural Observers,The main objects studied in this book are the generalized Kadomtsev-Petviashvili (KP) hierarchy and generalized multicomponent KP hierarchy, which unite several different types of continuous and discrete integrable systems connected with the standard KP and multicomponent KP hierarchies.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾市| 瑞昌市| 安丘市| 普宁市| 焉耆| 肇庆市| 襄垣县| 正安县| 财经| 黄梅县| 麻江县| 托里县| 富平县| 武冈市| 安福县| 吴江市| 兴化市| 包头市| 康保县| 山阴县| 宝鸡市| 成武县| 运城市| 同心县| 郎溪县| 津南区| 京山县| 根河市| 西和县| 永登县| 巩义市| 星座| 汝阳县| 独山县| 九台市| 科技| 林甸县| 申扎县| 利辛县| 龙游县| 北流市|