找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory, Approximation Theory, and Special Functions; In Honor of Hari M. Gradimir V. Milovanovi?,Michael Th. Rassias Book

[復(fù)制鏈接]
樓主: 迅速
21#
發(fā)表于 2025-3-25 03:27:20 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:29 | 只看該作者
The Mean Values of the Riemann Zeta-Function on the Critical LineIn this overview we give a detailed discussion of power moments of .(.), when . lies on the “critical line” .. The survey includes early results, the mean square and mean fourth power, higher moments, conditional results and some open problems.
23#
發(fā)表于 2025-3-25 13:42:15 | 只看該作者
Explicit Bounds Concerning Non-trivial Zeros of the Riemann Zeta FunctionIn this paper, we get explicit upper and lower bounds for .., where . are consecutive ordinates of non-trivial zeros . of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation . as . → ..
24#
發(fā)表于 2025-3-25 19:21:11 | 只看該作者
Identities for Reciprocal BinomialsEuler’s results related to the sum of the ratios of harmonic numbers and binomial coefficients are investigated in this paper. We give a particular example involving quartic binomial coefficients.
25#
發(fā)表于 2025-3-25 22:06:24 | 只看該作者
A Note on ,-Stirling NumbersThe .-Stirling numbers of both kinds are specializations of the complete or elementary symmetric functions. In this note, we use this fact to prove that the .-Stirling numbers can be expressed in terms of the .-binomial coefficients and vice versa.
26#
發(fā)表于 2025-3-26 03:17:51 | 只看該作者
A Survey on Cauchy–Bunyakovsky–Schwarz Inequality for Power SeriesIn this paper, we present a survey of some recent results for the celebrated Cauchy–Bunyakovsky–Schwarz inequality for functions defined by power series with nonnegative coefficients. Particular examples for fundamental functions of interest are presented. Applications for some special functions are given as well.
27#
發(fā)表于 2025-3-26 04:22:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:21:18 | 只看該作者
https://doi.org/10.1007/978-1-4939-0258-3Analytic Number Theory; Approximation theory; Riemann Hypothesis; additive number theory; hypergeometric
30#
發(fā)表于 2025-3-26 20:05:26 | 只看該作者
978-1-4939-4538-2Springer Science+Business Media New York 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
手游| 松溪县| 澄城县| 辉南县| 灌云县| 谷城县| 武平县| 泸州市| 中山市| 浦县| 宣化县| 慈利县| 莫力| 新乡县| 鄢陵县| 宜丰县| 朝阳区| 乐至县| 离岛区| 凉城县| 栖霞市| 拉孜县| 石阡县| 苍山县| 肇庆市| 商城县| 偃师市| 张家川| 阳新县| 醴陵市| 虞城县| 辽阳市| 满城县| 新乡市| 康马县| 仙游县| 石屏县| 阳原县| 兴宁市| 金山区| 绍兴县|