找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory; Proceedings of a Con Bruce C. Berndt,Harold G. Diamond,Adolf Hildebrand Conference proceedings 1990 Birkh?user Bost

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 22:33:59 | 只看該作者
Discovering Mathematics with MapleThe question of the horizontal distribution of the zeros of derivatives of Riemann’s zeta-function is an interesting one in view of its connection with the Riemann Hypothesis.
32#
發(fā)表于 2025-3-27 02:42:28 | 只看該作者
33#
發(fā)表于 2025-3-27 08:48:29 | 只看該作者
Vector Spaces and Linear Mappings,We use the letter . to denote positive integers. Ω(.) is the number of prime factors in the factorization of ., counted with multiplicity.
34#
發(fā)表于 2025-3-27 12:22:18 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:21 | 只看該作者
Evaluations of Selberg Character Sums,The .-dimensional Selberg character sums .. (.) are evaluated for all . ≥ 0 when the character . is trivial or quadratic. Additional character sum evaluations related to integral formulas of Selberg are conjectured.
36#
發(fā)表于 2025-3-27 21:47:10 | 只看該作者
37#
發(fā)表于 2025-3-28 01:20:11 | 只看該作者
38#
發(fā)表于 2025-3-28 05:57:33 | 只看該作者
39#
發(fā)表于 2025-3-28 10:09:47 | 只看該作者
Zeros of Derivatives Of the Riemann Zeta-Function Near the Critical Line,The question of the horizontal distribution of the zeros of derivatives of Riemann’s zeta-function is an interesting one in view of its connection with the Riemann Hypothesis.
40#
發(fā)表于 2025-3-28 10:45:44 | 只看該作者
On some Exponential Sums,Let . be a multiplicative function, and let α be an irrational number. In this paper we want to estimate the exponential sum .. If . is the constant multiplicative function 1 then trivially . in fact, the sum is bounded in this case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郯城县| 清水县| 武宣县| 和田市| 云阳县| 沙湾县| 灵丘县| 同江市| 闵行区| 缙云县| 宝坻区| 白河县| 丹棱县| 枣阳市| 鱼台县| 江山市| 汾西县| 辽宁省| 延长县| 大冶市| 略阳县| 武义县| 梁平县| 丰宁| 湘乡市| 托克托县| 边坝县| 桐庐县| 隆德县| 洪湖市| 景洪市| 诸暨市| 台山市| 平安县| 拜泉县| 桂林市| 乌审旗| 兴国县| 汉川市| 新龙县| 古交市|