找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic D-Modules and Applications; Jan-Erik Bj?rk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[復(fù)制鏈接]
樓主: infection
31#
發(fā)表于 2025-3-27 00:10:15 | 只看該作者
Regular holonomic ,-modules,ular holonomic if its formal solution complex is equal to its analytic solution complex at every point, i.e. if . for every .. ∈ Supp(.). The class of regular holonomic complexes is denoted by D.. (..). A holonomic module is regular holonomic if its single degree complex is regular holonomic. The cl
32#
發(fā)表于 2025-3-27 02:07:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:55:19 | 只看該作者
Distributions and regular holonomic systems,tion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
34#
發(fā)表于 2025-3-27 09:30:23 | 只看該作者
Microdifferential operators,n of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
35#
發(fā)表于 2025-3-27 14:00:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:31:44 | 只看該作者
37#
發(fā)表于 2025-3-28 00:53:41 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:05 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:14:10 | 只看該作者
ges) applicable to them. The closure property is shown to be preserved in a natural way by the results of operations possessing the same characteristics as the operands in a query. It is shown that every class possesses the properties of an operand by defining a set of objects and deriving a set of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
响水县| 密山市| 理塘县| 洱源县| 乐陵市| 新密市| 社会| 托克逊县| 吉水县| 道真| 潮州市| 清水河县| 涪陵区| 文水县| 丹巴县| 屏边| 万载县| 增城市| 固镇县| 尖扎县| 乐平市| 钟山县| 乌鲁木齐市| 高要市| 瑞丽市| 英吉沙县| 巫溪县| 沙田区| 万全县| 利津县| 托克托县| 盐边县| 邵阳县| 永川市| 桓台县| 大城县| 容城县| 梁山县| 普陀区| 龙山县| 中牟县|