找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic D-Modules and Applications; Jan-Erik Bj?rk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[復(fù)制鏈接]
樓主: infection
31#
發(fā)表于 2025-3-27 00:10:15 | 只看該作者
Regular holonomic ,-modules,ular holonomic if its formal solution complex is equal to its analytic solution complex at every point, i.e. if . for every .. ∈ Supp(.). The class of regular holonomic complexes is denoted by D.. (..). A holonomic module is regular holonomic if its single degree complex is regular holonomic. The cl
32#
發(fā)表于 2025-3-27 02:07:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:55:19 | 只看該作者
Distributions and regular holonomic systems,tion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
34#
發(fā)表于 2025-3-27 09:30:23 | 只看該作者
Microdifferential operators,n of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
35#
發(fā)表于 2025-3-27 14:00:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:31:44 | 只看該作者
37#
發(fā)表于 2025-3-28 00:53:41 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:05 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:14:10 | 只看該作者
ges) applicable to them. The closure property is shown to be preserved in a natural way by the results of operations possessing the same characteristics as the operands in a query. It is shown that every class possesses the properties of an operand by defining a set of objects and deriving a set of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芷江| 宝坻区| 喀什市| 洛浦县| 松江区| 普定县| 涿鹿县| 马公市| 堆龙德庆县| 台东市| 福泉市| 霍林郭勒市| 庄浪县| 双鸭山市| 襄城县| 哈巴河县| 松桃| 鄄城县| 泾阳县| 灵石县| 会昌县| 科技| 绍兴县| 保亭| 晋江市| 青州市| 大城县| 徐州市| 井冈山市| 南宁市| 威远县| 雷波县| 海南省| 宕昌县| 英超| 吉木萨尔县| 丽水市| 北海市| 上林县| 集贤县| 修水县|