找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis, Partial Differential Equations and Applications; The Vladimir Maz‘ya Alberto Cialdea,Paolo Emilio Ricci,Flavia Lanzara Conferenc

[復制鏈接]
樓主: Reticent
21#
發(fā)表于 2025-3-25 04:24:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:05:21 | 只看該作者
23#
發(fā)表于 2025-3-25 12:23:43 | 只看該作者
,Solvability Conditions for a Discrete Model of Schr?dinger’s Equation, . satisfying .=.+α. Other sufficient conditions are derived. In the converse direction, if α≥ 0 and the equation .=.+α has a solution .≥0, then . and ..ω-a.e. These results are obtained from bilateral estimates for the kernel of the Neumann series ..
24#
發(fā)表于 2025-3-25 17:25:09 | 只看該作者
An Algebra of Shift-invariant Singular Integral Operators with Slowly Oscillating Data and Its Applcillating Carleson curve. By applying the theory of Mellin pseudodifferential operators, Fredholm symbol calculi for these algebras and Fredholm criteria and index formulas for their elements are established in terms of their Fredholm symbols.
25#
發(fā)表于 2025-3-25 22:19:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:19:43 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:47 | 只看該作者
Edwin Ordoukhanian,Azad M. Madni special case with no dependence on the third spatial coordinate our model is equivalent to the Dirac equation. The crucial element of the proof is the observation that our Lagrangian admits a factorisation.
28#
發(fā)表于 2025-3-26 11:07:25 | 只看該作者
29#
發(fā)表于 2025-3-26 15:47:36 | 只看該作者
Alberto Cialdea,Paolo Emilio Ricci,Flavia LanzaraDedicated to the 70th birthday of Vladimir G. Maz‘ya.Contributions by top-notch researchers in the fields of interest of V.G. Maz‘ya.Includes supplementary material:
30#
發(fā)表于 2025-3-26 18:57:45 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/a/image/156497.jpg
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 12:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇阳县| 始兴县| 长海县| 阳原县| 盐城市| 垫江县| 白玉县| 易门县| 大同市| 襄垣县| 尼木县| 关岭| 津南区| 临潭县| 大悟县| 出国| 新建县| 桐梓县| 乾安县| 新兴县| 克山县| 治多县| 吴川市| 清涧县| 清苑县| 唐海县| 湘阴县| 贞丰县| 南丰县| 伊吾县| 天柱县| 白水县| 毕节市| 建湖县| 海宁市| 内黄县| 独山县| 德安县| 西林县| 关岭| 南昌市|