找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis, Geometry and Probability; Essays in honour of Rajendra Bhatia Book 1996 Hindustan Book Agency (India) 1996

[復(fù)制鏈接]
樓主: magnify
31#
發(fā)表于 2025-3-26 22:22:50 | 只看該作者
32#
發(fā)表于 2025-3-27 01:37:36 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 12:40:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:34:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:49:14 | 只看該作者
Counting Finite Groups,these questions have partial (and, in some cases, complete) answers. Their investigations take us into the domain of both finite group theory and analytic number theory. It is the purpose of this article to survey these investigations and to adumbrate problems and topics for further research.
37#
發(fā)表于 2025-3-28 00:14:49 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:33 | 只看該作者
Book 1996e a glimpse into an active field of research. All articles are accessible to graduate students. The articles were invited in honour of K. R. Parthasarathy, a mathematican, teacher and expositor of renown. Some of the articles, by his coworkers, are related to his work on probability, quantum probabi
39#
發(fā)表于 2025-3-28 06:52:40 | 只看該作者
https://doi.org/10.1007/978-981-32-9339-7g the form of irreducible representations of .(.) admitting non-zero Iwahori-fixed vectors. In the final section we define the Brylinski quotient .(.) for the space T. equipped with the natural action of the symmetric group . and prove that the space of Deligne-Langlands parameters of these representations is homeomorphic to .(.).
40#
發(fā)表于 2025-3-28 12:04:26 | 只看該作者
The Representation theory of ,-adic ,(,) and Deligne-Langlands parameters,g the form of irreducible representations of .(.) admitting non-zero Iwahori-fixed vectors. In the final section we define the Brylinski quotient .(.) for the space T. equipped with the natural action of the symmetric group . and prove that the space of Deligne-Langlands parameters of these representations is homeomorphic to .(.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木乃县| 滕州市| 利津县| 平湖市| 嘉义县| 长春市| 柳州市| 牟定县| 武冈市| 铁岭县| 太保市| 陇南市| 马尔康县| 耒阳市| 花莲县| 高陵县| 师宗县| 皮山县| 吉隆县| 龙泉市| 青河县| 信阳市| 陇南市| 大港区| 新蔡县| 兴宁市| 若羌县| 叙永县| 伊吾县| 衢州市| 小金县| 昌平区| 宾阳县| 重庆市| 共和县| 宁陵县| 京山县| 赣榆县| 西平县| 望城县| 新沂市|