找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis on Lie Groups with Polynomial Growth; Nick Dungey,A. F. M. Elst,Derek W. Robinson Textbook 2003 Birkh?user Boston 2003 Algebraic

[復(fù)制鏈接]
樓主: miserly
11#
發(fā)表于 2025-3-23 13:43:44 | 只看該作者
Deyuan Meng,Mingjun Du,Yuxin Wuheavily on the Lie group formulation of homogenization theory given in Chapter IV and uses the Gaussian bounds of Theorem IV.7.1. The derivation of the latter bounds relied implicitly on homogenization but in the asymptotics the homogenized operator and the corresponding semigroup and kernel play an
12#
發(fā)表于 2025-3-23 15:31:16 | 只看該作者
0743-1643 s well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory..978-1-4612-7399-8978-1-4612-2062-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 19:55:57 | 只看該作者
Asymptotics,p .. ?.and its kernel 11 ?.on the group .., where.is the semigroup generated by the homogenized operator.on ..(..) and .. = .. . .. (.) is the projection onto the constant functions on .. In fact one can identify the first-order corrections in an asymptotic expansion and obtain estimates on the rate
14#
發(fā)表于 2025-3-24 00:49:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:41:51 | 只看該作者
Introduction,mplest constraint resulting from the group action is on the volume growth. There are only two possibilities. In the first case the volume of a ball grows no faster than a power of its radius. Groups with this characteristic are called Lie groups of polynomial growth. Compact Lie groups fall within t
16#
發(fā)表于 2025-3-24 06:42:27 | 只看該作者
General Formalism,hich are summarized for later reference. A second part consists of the basic definitions of subelliptic operators and the related semigroups together with the description of some preliminary results which motivate the later analysis. Thirdly, we introduce several techniques adapted to the Lie group
17#
發(fā)表于 2025-3-24 13:51:58 | 只看該作者
18#
發(fā)表于 2025-3-24 15:39:26 | 只看該作者
Asymptotics,heavily on the Lie group formulation of homogenization theory given in Chapter IV and uses the Gaussian bounds of Theorem IV.7.1. The derivation of the latter bounds relied implicitly on homogenization but in the asymptotics the homogenized operator and the corresponding semigroup and kernel play an
19#
發(fā)表于 2025-3-24 20:41:03 | 只看該作者
20#
發(fā)表于 2025-3-25 01:54:16 | 只看該作者
General Formalism,analysis. Since most of the reference material is quite standard it is summarized in formal statements without proof. Further details and specific references to the literature are, however, given in the Notes and Remarks at the end of the chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正镶白旗| 桐城市| 玉环县| 余姚市| 舟曲县| 新绛县| 济源市| 呼伦贝尔市| 新津县| 南昌县| 垣曲县| 灵山县| 鄂尔多斯市| 闸北区| 彭州市| 丰台区| 乐陵市| 孝感市| 达日县| 桦甸市| 梁山县| 昂仁县| 金阳县| 丰宁| 朔州市| 揭阳市| 旬阳县| 正镶白旗| 焦作市| 满洲里市| 榕江县| 甘德县| 镇巴县| 汉中市| 昭觉县| 南阳市| 东方市| 全州县| 揭西县| 宿迁市| 长岭县|