找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis on Lie Groups with Polynomial Growth; Nick Dungey,A. F. M. Elst,Derek W. Robinson Textbook 2003 Birkh?user Boston 2003 Algebraic

[復(fù)制鏈接]
樓主: miserly
11#
發(fā)表于 2025-3-23 13:43:44 | 只看該作者
Deyuan Meng,Mingjun Du,Yuxin Wuheavily on the Lie group formulation of homogenization theory given in Chapter IV and uses the Gaussian bounds of Theorem IV.7.1. The derivation of the latter bounds relied implicitly on homogenization but in the asymptotics the homogenized operator and the corresponding semigroup and kernel play an
12#
發(fā)表于 2025-3-23 15:31:16 | 只看該作者
0743-1643 s well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory..978-1-4612-7399-8978-1-4612-2062-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 19:55:57 | 只看該作者
Asymptotics,p .. ?.and its kernel 11 ?.on the group .., where.is the semigroup generated by the homogenized operator.on ..(..) and .. = .. . .. (.) is the projection onto the constant functions on .. In fact one can identify the first-order corrections in an asymptotic expansion and obtain estimates on the rate
14#
發(fā)表于 2025-3-24 00:49:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:41:51 | 只看該作者
Introduction,mplest constraint resulting from the group action is on the volume growth. There are only two possibilities. In the first case the volume of a ball grows no faster than a power of its radius. Groups with this characteristic are called Lie groups of polynomial growth. Compact Lie groups fall within t
16#
發(fā)表于 2025-3-24 06:42:27 | 只看該作者
General Formalism,hich are summarized for later reference. A second part consists of the basic definitions of subelliptic operators and the related semigroups together with the description of some preliminary results which motivate the later analysis. Thirdly, we introduce several techniques adapted to the Lie group
17#
發(fā)表于 2025-3-24 13:51:58 | 只看該作者
18#
發(fā)表于 2025-3-24 15:39:26 | 只看該作者
Asymptotics,heavily on the Lie group formulation of homogenization theory given in Chapter IV and uses the Gaussian bounds of Theorem IV.7.1. The derivation of the latter bounds relied implicitly on homogenization but in the asymptotics the homogenized operator and the corresponding semigroup and kernel play an
19#
發(fā)表于 2025-3-24 20:41:03 | 只看該作者
20#
發(fā)表于 2025-3-25 01:54:16 | 只看該作者
General Formalism,analysis. Since most of the reference material is quite standard it is summarized in formal statements without proof. Further details and specific references to the literature are, however, given in the Notes and Remarks at the end of the chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 06:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 乐东| 昭平县| 金山区| 东丰县| 陈巴尔虎旗| 吉木乃县| 平乐县| 射阳县| 紫阳县| 莱芜市| 磴口县| 高雄县| 定陶县| 皋兰县| 凤阳县| 巴彦县| 古蔺县| 古交市| 新密市| 香河县| 苍溪县| 城步| 邢台市| 南丰县| 隆德县| 长子县| 永定县| 新龙县| 甘洛县| 恩施市| 临桂县| 枞阳县| 锡林浩特市| 五峰| 大足县| 元谋县| 图木舒克市| 泰宁县| 莱西市| 临城县|