找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Symbolic Data; Exploratory Methods Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 12:17:13 | 只看該作者
Illustrative Benchmark Analyses,the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistics (ONS) from the United Kingdom, the Inspection Générale de la Sécurité Sociale (IGSS) from Luxembourg and marginally the University of Athens..
12#
發(fā)表于 2025-3-23 17:02:09 | 只看該作者
Lars Holtkamp,Nils Arne Brockmannual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
13#
發(fā)表于 2025-3-23 19:56:52 | 只看該作者
Direkte Demokratie in Deutschland,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
14#
發(fā)表于 2025-3-24 01:38:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:45 | 只看該作者
Conference proceedings 2000tical statistical exploitation and analysis of official statistical data. This chapter aims to report briefly on these activities by presenting some signifi- cant insights into practical results obtained by the benchmark partners in using the SODAS software package as described in chapter 14 below.
16#
發(fā)表于 2025-3-24 07:02:42 | 只看該作者
The Classical Data Situation,ual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
17#
發(fā)表于 2025-3-24 13:38:37 | 只看該作者
Generation of Symbolic Objects from Relational Databases,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
18#
發(fā)表于 2025-3-24 17:19:25 | 只看該作者
Symbolic Factor Analysis,ipal component analysis (PCA), the proposed method visualizes each object . by a . in .. Whereas the classical PCA is briefly sketched in section 9.1, we describe our generalized method in section 9.2. Thereby, we present a typical example concerning oils and fats in order to illustrate the effectiveness of the proposed symbolic PCA method.
19#
發(fā)表于 2025-3-24 22:57:01 | 只看該作者
Conference proceedings 2000apters of this book. It was accompanied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spai
20#
發(fā)表于 2025-3-25 01:08:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 吴江市| 安龙县| 永登县| 建平县| 德清县| 康马县| 利川市| 蒙山县| 丹江口市| 神农架林区| 肇源县| 祥云县| 巧家县| 鱼台县| 高密市| 卢龙县| 嵊泗县| 古丈县| 西乡县| 乐昌市| 永平县| 遂平县| 金塔县| 泗洪县| 建阳市| 太仓市| 隆尧县| 新绛县| 柞水县| 奉节县| 南华县| 喜德县| 射洪县| 武义县| 洛隆县| 田林县| 仁怀市| 山东省| 通榆县| 周至县|