找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Laminar Flow over a Backward Facing Step; A GAMM Workshop Ken Morgan,Jacques Periaux,Fran?ois Thomasset Book 1984 Springer Fach

[復(fù)制鏈接]
樓主: HIV763
11#
發(fā)表于 2025-3-23 13:30:53 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:28 | 只看該作者
An Efficient Quasi-Linear Finite Element Method for Solving the Incompressible Navier-Stokes Equatimprove as the Reynolds number increases. Conjugate gradients algorithms are especially developed for solving the resulting linear systems including unsymmetrical matrices. For convection dominated flows, a balancing dissipation technique is introduced in order to stabilize the oscillatory nature of the solution.
13#
發(fā)表于 2025-3-23 21:36:50 | 只看該作者
Analysis of Laminar Flow over a Backward Facing StepA GAMM Workshop
14#
發(fā)表于 2025-3-24 01:25:17 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:59 | 只看該作者
16#
發(fā)表于 2025-3-24 10:07:30 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:24 | 只看該作者
18#
發(fā)表于 2025-3-24 14:56:48 | 只看該作者
Calculation of Laminar Flow over a Step by a Finite Element Method Based on the Stream Function-Vorequations. The unknowns are the stream function . and the vorticity ., leading to the mixed method proposed by Ciarlet and Raviart [1]. A theoretical study of this approach is presented in the book of Girault and Raviart [2].
19#
發(fā)表于 2025-3-24 23:04:02 | 只看該作者
An Efficient Quasi-Linear Finite Element Method for Solving the Incompressible Navier-Stokes Equatilts from a three step implicit scheme for the time discretization and from a finite element approximation for the space discretization. The typical fractional step method leads to an uncoupling between the non linearity and incompressibility and the convective terms appear in a linearized semi-impli
20#
發(fā)表于 2025-3-24 23:40:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 新竹市| 随州市| 安泽县| 徐汇区| 永州市| 团风县| 芜湖县| 栾城县| 什邡市| 成都市| 兴化市| 虞城县| 喀什市| 原阳县| 海晏县| 宁陵县| 冷水江市| 商河县| 繁峙县| 太湖县| 祁东县| 武汉市| 米泉市| 腾冲县| 蒙城县| 绍兴市| 当雄县| 邢台市| 宜阳县| 和田市| 临汾市| 苏尼特左旗| 嘉善县| 梁平县| 墨竹工卡县| 开鲁县| 万盛区| 喀什市| 水城县| 嵩明县|