找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis at Large; Dedicated to the Lif Artur Avila,Michael Th. Rassias,Yakov Sinai Book 2022 The Editor(s) (if applicable) and The Author(

[復制鏈接]
樓主: Gratification
41#
發(fā)表于 2025-3-28 18:34:12 | 只看該作者
42#
發(fā)表于 2025-3-28 22:14:31 | 只看該作者
Equidistribution of Affine Random Walks on Some Nilmanifolds,ld. Combined with equidistribution results on the torus, this leads to an equidistribution statement on some nilmanifolds such as Heisenberg nilmanifolds. In an appendix we strengthen results of de Saxce and the first named author regarding random walks on the torus by eliminating an assumption on Zariski connectedness of the acting group.
43#
發(fā)表于 2025-3-29 01:45:14 | 只看該作者
The Slicing Problem by Bourgain,s innocent and seemingly obvious question (which remains unanswered!) has established a new direction in high-dimensional geometry. It has emerged as an “engine” that inspired the discovery of many deep results and unexpected connections. Here we provide a survey of these developments, including many of Bourgain’s results.
44#
發(fā)表于 2025-3-29 05:58:10 | 只看該作者
45#
發(fā)表于 2025-3-29 10:32:24 | 只看該作者
46#
發(fā)表于 2025-3-29 12:12:05 | 只看該作者
Book 2022interconnections with other fields. In this volume, the contributions made by renowned experts present both research and surveys on a wide spectrum of subjects, each of which pay tribute to a true mathematical pioneer. Examples of topics discussed in this book include?Bourgain’s discretized sum-prod
47#
發(fā)表于 2025-3-29 19:07:24 | 只看該作者
48#
發(fā)表于 2025-3-29 21:23:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:50:01 | 只看該作者
The Continuous Formulation of Shallow Neural Networks as Wasserstein-Type Gradient Flows, for the weights for the error functional. In the limit, as the number of parameters tends to infinity, this gives rise to a family of parabolic equations. This survey aims to discuss this relation, focusing on the associated theoretical aspects appealing to the mathematical community and providing
50#
發(fā)表于 2025-3-30 06:30:07 | 只看該作者
,A Weighted Prékopa–Leindler Inequality and Sumsets with Quasicubes,r inequality. This is then applied to show that if . are finite sets and . is a subset of a “quasicube”, then .. This result is a key ingredient in forthcoming work of the fifth author and P?lv?lgyi on the sum-product phenomenon.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 10:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
诸城市| 临西县| 麦盖提县| 饶河县| 寿宁县| 双桥区| 措美县| 丰城市| 闻喜县| 双柏县| 岳阳市| 伊春市| 宜川县| 光泽县| 白朗县| 华安县| 江口县| 嘉荫县| 弋阳县| 临洮县| 上高县| 阆中市| 涞水县| 吉首市| 南木林县| 兴海县| 伊金霍洛旗| 广平县| 龙川县| 秭归县| 通海县| 乌苏市| 武安市| 汾阳市| 内黄县| 汶川县| 永宁县| 革吉县| 临武县| 宣恩县| 芦溪县|