找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Tool in Mathematical Physics; In Memory of Boris P Pavel Kurasov,Ari Laptev,Barry Simon Book 2020 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: odometer
31#
發(fā)表于 2025-3-27 00:03:48 | 只看該作者
https://doi.org/10.1007/978-3-540-46824-0ying condition (Ψ) and we shall consider the limits of semibicharacteristics at the set where the principal symbol vanishes of at least second order. The convergence shall be as smooth curves, and we shall assume that the normalized complex Hamilton vector field of the principal symbol over the semi
32#
發(fā)表于 2025-3-27 01:14:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:21:10 | 只看該作者
Cordelia Friesendorf,Sabrina Lüttschwager(Kronshtadt, Russia, 27 July 1936 – Auckland, New Zealand, 30 January 2016).1959, Leningrad University, Faculty of Physics, grad. 1958.
34#
發(fā)表于 2025-3-27 12:41:54 | 只看該作者
https://doi.org/10.1007/978-3-658-33983-8Pavlov’s contribution to science is not limited to his publications, he used to say that .. Nevertheless, most of Pavlov’s ideas are reflected in his publications showing us different facets of his scientific personality.
35#
發(fā)表于 2025-3-27 17:34:03 | 只看該作者
https://doi.org/10.1007/978-3-662-65816-1The investigation of electron properties of polyatomic systems reduces, as a rule, to the spectral and scattering problems for the Schr?dinger operator in . with an effective self-consistent potential . that incorporates in some way the effect of electron–ion and electron–electron multi-particle interactions on a single valence electron.
36#
發(fā)表于 2025-3-27 21:03:11 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:07 | 只看該作者
38#
發(fā)表于 2025-3-28 04:12:00 | 只看該作者
39#
發(fā)表于 2025-3-28 08:35:47 | 只看該作者
https://doi.org/10.1007/978-3-540-46824-0We investigate the behavior of large eigenvalues for the quantum Rabi Hamiltonian, i.e., for the Jaynes–Cummings model without the rotating wave approximation. The three-term asymptotics we obtain involves all the parameters of the model so that we can recover them from the behavior of its large eigenvalues.
40#
發(fā)表于 2025-3-28 14:05:24 | 只看該作者
https://doi.org/10.1007/978-3-540-46824-0We determine which sets saturate the Szeg? and Schiefermayr lower bounds on the norms of Chebyshev Polynomials. We also discuss sets that saturate our optimal Totik–Widom upper bound.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治县。| 长阳| 共和县| 渭源县| 九龙坡区| 罗田县| 弥勒县| 当雄县| 肃南| 十堰市| 沿河| 措勤县| 神农架林区| 连平县| 观塘区| 浦江县| 门源| 博野县| 平安县| 长海县| 乐业县| 马边| 昭苏县| 乌拉特后旗| 临海市| 泉州市| 普安县| 剑河县| 甘德县| 吴堡县| 马边| 资阳市| 崇左市| 济阳县| 剑河县| 九龙坡区| 宜宾市| 普格县| 广州市| 神农架林区| 镇康县|