找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,Jo?o Marcos do ó,Carlos Tomei Book 2014

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 12:37:59 | 只看該作者
1421-1750 of articles presented at the Workshop for Nonlinear Analysis held in Jo?o Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many
12#
發(fā)表于 2025-3-23 14:04:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:10 | 只看該作者
Analysis and Topology in Nonlinear Differential EquationsA Tribute to Bernhar
14#
發(fā)表于 2025-3-23 23:06:12 | 只看該作者
1421-1750 tical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.978-3-319-38032-2978-3-319-04214-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
15#
發(fā)表于 2025-3-24 05:13:47 | 只看該作者
Djairo G Figueiredo,Jo?o Marcos do ó,Carlos TomeiGrowing vital area of mathematics.Anniversary volume dedicated to Bernhard Ruf.Includes supplementary material:
16#
發(fā)表于 2025-3-24 06:59:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:52 | 只看該作者
https://doi.org/10.1007/978-3-662-06736-9tional problems. With this purpose, we prove a slice theorem for continuous affine actions of a (finite-dimensional) Lie group on Banach manifolds. As an application, we discuss equivariant bifurcation of constant mean curvature hypersurfaces, providing a few concrete examples and counter-examples.
20#
發(fā)表于 2025-3-25 00:13:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 22:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玉屏| 抚松县| 城市| 论坛| 淮阳县| 海晏县| 龙游县| 图们市| 丹江口市| 泸西县| 云梦县| 新民市| 鄂州市| 广饶县| 墨竹工卡县| 北京市| 筠连县| 岳池县| 合阳县| 德化县| 皮山县| 桐庐县| 拉萨市| 耒阳市| 库伦旗| 天门市| 乐清市| 恩施市| 边坝县| 德安县| 措勤县| 平和县| 黄平县| 清徐县| 松阳县| 米泉市| 大洼县| 枣阳市| 阆中市| 合肥市| 卓资县|