找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Simulation of Fluid Dynamics; Caterina Calgaro,Jean-Fran?ois Coulombel,Thierry G Conference proceedings 2007 Birkh?user Basel

[復制鏈接]
樓主: burgeon
41#
發(fā)表于 2025-3-28 17:40:46 | 只看該作者
Direct Numerical Simulation and Analysis of 2D Turbulent Flows,cylinders in a channel. They confirm on one hand the presence of an attractor and on the other hand the coexistence of both direct enstrophy and inverse energy cascades. The use of a threshold directly on the vorticity intensity or on the wavelets packets coefficients separate the flow into two part
42#
發(fā)表于 2025-3-28 19:24:13 | 只看該作者
43#
發(fā)表于 2025-3-29 02:28:52 | 只看該作者
44#
發(fā)表于 2025-3-29 03:30:26 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:06 | 只看該作者
Numerical Simulations of the Inviscid Primitive Equations in a Limited Domain,boundary conditions introduced in [RTT05b]. We consider the 2D nonlinear PEs, and firstly compute the solutions in a “l(fā)arge” rectangular domain Ω. with periodic boundary conditions in the horizontal direction. Then we consider a subdomain Ω., in which we compute a second numerical solution with tran
46#
發(fā)表于 2025-3-29 13:51:04 | 只看該作者
47#
發(fā)表于 2025-3-29 15:34:42 | 只看該作者
On Compressible and Incompressible Vortex Sheets,e author with J.F. Coulombel about compressible vortex sheets in two space dimensions, under a supersonic condition that precludes violent instabilities. The problem is a nonlinear free boundary hyperbolic problem with two difficulties: the free boundary is characteristic and the Lopatinski conditio
48#
發(fā)表于 2025-3-29 22:31:58 | 只看該作者
49#
發(fā)表于 2025-3-30 02:47:53 | 只看該作者
Introduction,anion animals across the world; (5) the multiplicity of dimensions of the human-animal bond in times of a nuclear disaster; (6) the social and political attitudes to feral, stray and semi-stray animals; as well as (7) public perceptions of the animal adoption process and (8) strategies of strengthen
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-26 22:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桐梓县| 常州市| 营口市| 滕州市| 互助| 乐至县| 汉源县| 林甸县| 会理县| 伊宁县| 法库县| 屏边| 丹江口市| 嵊泗县| 财经| 日喀则市| 沂南县| 共和县| 荣成市| 富宁县| 临城县| 崇阳县| 弥渡县| 周至县| 沾益县| 河东区| 滕州市| 富锦市| 滁州市| 青浦区| 宿松县| 乐昌市| 禹城市| 巨鹿县| 台东市| 会宁县| 南江县| 苗栗市| 迭部县| 古浪县| 岳阳县|