找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Quantum Groups; Lars Tuset Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 05:24:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:13 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:48 | 只看該作者
Digital VLSI Design with VerilogThe classical notion of twisted actions of groups on algebras can be rephrased as so called cocycle coactions of locally compact quantum groups on von Neumann algebras generalizing both twisted actions and coactions.
24#
發(fā)表于 2025-3-25 18:27:02 | 只看該作者
Introduction,Quantum groups disclosed themselves to us as holders of .-matrices via quantum inverse scattering methods.
25#
發(fā)表于 2025-3-25 21:55:49 | 只看該作者
Banach Spaces,This chapter deals with what could be called geometric functional analysis. Results from plane geometry are generalized to infinite dimensional vector spaces, including function spaces, yielding powerful, general results with a wide range of applications from within optimization theory to physics.
26#
發(fā)表于 2025-3-26 02:29:59 | 只看該作者
Tensor Products,Tensor products is the study of multilinear maps by linear maps, meaning that the multilinear maps from a space factor uniquely through a linear map defined on another vector space called the tensor product of the vector spaces occurring as direct products in the domain of the multilinear maps.
27#
發(fā)表于 2025-3-26 06:43:47 | 只看該作者
Spectra and Type , Factors,In this section we study some useful invariants especially of type . von Neumann algebras bringing our classification program to a certain level of completion. From the outset these invariants are associated with dynamical systems.
28#
發(fā)表于 2025-3-26 08:52:56 | 只看該作者
Quantum Groups and Duality,The basic notion in this chapter and the second half of the book, is that of a locally compact quantum group
29#
發(fā)表于 2025-3-26 14:11:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平陆县| 玛沁县| 凌源市| 建始县| 桓台县| 弥勒县| 淅川县| 固原市| 印江| 铜川市| 新郑市| 枞阳县| 汝州市| 巴东县| 宜川县| 维西| 行唐县| 城市| 米林县| 屏东市| 隆尧县| 鄯善县| 浦江县| 贵南县| 清镇市| 南阳市| 麦盖提县| 来宾市| 绥中县| 西峡县| 天峨县| 宁波市| 民丰县| 沈丘县| 安塞县| 呼和浩特市| 晋城| 梁山县| 麻栗坡县| 巢湖市| 临夏市|