找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry on Complex Homogeneous Domains; Jacques Faraut,Soji Kaneyuki,Guy Roos Textbook 2000 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 17:32:50 | 只看該作者
Bergman Kernel and Bergman MetricIn this chapter we consider general domains in ?.. The material discussed is easily available in the literature. Still we give here essentially complete proofs, since we can do it in very concisely and since the results will be used later in several instances.
42#
發(fā)表于 2025-3-28 19:05:28 | 只看該作者
Symmetric Domains and Symmetric SpacesA domain .is said to be a . if it is bounded and if for every . in . there exists an automorphism .such that .. is involutive ..... and . is an isolated fixed point of ...
43#
發(fā)表于 2025-3-29 00:53:49 | 只看該作者
Structure of Symmetric DomainsWe continue with the setup and notations of Chapter III. For each .we set.we also write .. when .= ... We also use the abbreviation.and, similarly, y., e., etc. We set
44#
發(fā)表于 2025-3-29 05:21:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:15:44 | 只看該作者
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [1].
46#
發(fā)表于 2025-3-29 12:59:08 | 只看該作者
47#
發(fā)表于 2025-3-29 15:45:53 | 只看該作者
48#
發(fā)表于 2025-3-29 21:54:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:13 | 只看該作者
Requirements on digital signature schemes,gular cone in g. Then .is a complex Olshanski semi-group. Let .. be an element in the center of g such that Ad(..) has eigenvalues i, 0, -i, and.be the corresponding eigenspace decomposition. We assume that .Let P.... be the analytic subgroups in .with Lie algebras p..p.. The subgroup .normalizes p.
50#
發(fā)表于 2025-3-30 04:02:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通山县| 湟源县| 虞城县| 昌都县| 长宁区| 隆化县| 清镇市| 扎兰屯市| 讷河市| 博客| 安泽县| 容城县| 辽宁省| 务川| 牟定县| 醴陵市| 咸宁市| 枣强县| 江川县| 宜兴市| 仁怀市| 洞头县| 陆良县| 明水县| 柳州市| 白城市| 凤山县| 新河县| 九龙县| 临漳县| 阳谷县| 宜州市| 达尔| 景谷| 玉龙| 巨鹿县| 崇文区| 武冈市| 广平县| 深水埗区| 宁津县|