找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry on Complex Homogeneous Domains; Jacques Faraut,Soji Kaneyuki,Guy Roos Textbook 2000 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 17:32:50 | 只看該作者
Bergman Kernel and Bergman MetricIn this chapter we consider general domains in ?.. The material discussed is easily available in the literature. Still we give here essentially complete proofs, since we can do it in very concisely and since the results will be used later in several instances.
42#
發(fā)表于 2025-3-28 19:05:28 | 只看該作者
Symmetric Domains and Symmetric SpacesA domain .is said to be a . if it is bounded and if for every . in . there exists an automorphism .such that .. is involutive ..... and . is an isolated fixed point of ...
43#
發(fā)表于 2025-3-29 00:53:49 | 只看該作者
Structure of Symmetric DomainsWe continue with the setup and notations of Chapter III. For each .we set.we also write .. when .= ... We also use the abbreviation.and, similarly, y., e., etc. We set
44#
發(fā)表于 2025-3-29 05:21:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:15:44 | 只看該作者
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [1].
46#
發(fā)表于 2025-3-29 12:59:08 | 只看該作者
47#
發(fā)表于 2025-3-29 15:45:53 | 只看該作者
48#
發(fā)表于 2025-3-29 21:54:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:13 | 只看該作者
Requirements on digital signature schemes,gular cone in g. Then .is a complex Olshanski semi-group. Let .. be an element in the center of g such that Ad(..) has eigenvalues i, 0, -i, and.be the corresponding eigenspace decomposition. We assume that .Let P.... be the analytic subgroups in .with Lie algebras p..p.. The subgroup .normalizes p.
50#
發(fā)表于 2025-3-30 04:02:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓尼县| 唐山市| 金门县| 汉沽区| 岚皋县| 临洮县| 清新县| 嵊泗县| 宁津县| 双桥区| 来宾市| 蒙山县| 怀化市| 香港| 左权县| 宽甸| 海丰县| 司法| 寻甸| 济源市| 丹凤县| 白朗县| 清河县| 德保县| 宣武区| 云和县| 永嘉县| 鄂州市| 邯郸县| 北宁市| 于都县| 加查县| 阿瓦提县| 牡丹江市| 油尖旺区| 五台县| 合川市| 白水县| 平谷区| 兴化市| 浦东新区|