找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry in Control Theory and its Applications; Piernicola Bettiol,Piermarco Cannarsa,Franco Rampa Book 2015 Springer Intern

[復(fù)制鏈接]
樓主: fasten
11#
發(fā)表于 2025-3-23 13:08:34 | 只看該作者
A Geometric Approach to the Optimal Control of Nonholonomic Mechanical Systems,ad to the correct dynamics. Application of the theory is demonstrated through several examples including optimal control of the Chaplygin sleigh, a continuously variable transmission, and a problem of motion planning for obstacle avoidance.
12#
發(fā)表于 2025-3-23 16:22:32 | 只看該作者
Second-Order Necessary Optimality Conditions for the Mayer Problem Subject to a General Control Con embedding of the problem into a class of infinite dimensional mathematical programming type problems. As an application we derive new second-order necessary conditions for a free end-time optimal control problem in the case when an optimal control is piecewise Lipschitz.
13#
發(fā)表于 2025-3-23 19:42:37 | 只看該作者
Book 2015ch fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Tod
14#
發(fā)表于 2025-3-24 00:20:32 | 只看該作者
15#
發(fā)表于 2025-3-24 03:55:37 | 只看該作者
Signals and Communication Technologyation of this metric due to a standard perturbation in space mechanics, the lunar attraction. Using Hamiltonian formalism, we describe the effects of the perturbation on the orbital transfers and the deformation of the conjugate and cut loci of the original metric.
16#
發(fā)表于 2025-3-24 08:28:32 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:12 | 只看該作者
https://doi.org/10.1007/978-3-540-72613-5iogenic signaling or tumor immune system interactions are included in the model, singular controls that administer therapeutic agents at less than maximum dose become optimal. Their relations to metronomic dosing are discussed.
18#
發(fā)表于 2025-3-24 16:59:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:14:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 内乡县| 巴南区| 韩城市| 基隆市| 呼图壁县| 石渠县| 宜宾市| 闵行区| 益阳市| 昌图县| 张北县| 天门市| 静海县| 江口县| 东阳市| 洱源县| 武平县| 五家渠市| 蒲江县| 博兴县| 辉县市| 疏附县| 岱山县| 汉源县| 屏南县| 黎川县| 石阡县| 桑植县| 安福县| 彭州市| 海阳市| 通化市| 广德县| 奉节县| 嘉黎县| 化州市| 阳山县| 曲松县| 商水县| 舞钢市|