找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis Meets Geometry; The Mikael Passare M Mats Andersson,Jan Boman,Ragnar Sigurdsson Book 2017 Springer International Publishing AG 201

[復(fù)制鏈接]
樓主: Halcyon
11#
發(fā)表于 2025-3-23 12:38:49 | 只看該作者
978-3-319-84909-6Springer International Publishing AG 2017
12#
發(fā)表于 2025-3-23 15:08:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:33 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:07 | 只看該作者
Manufacturing Innovation and Horizon 2020Noether say that such a representation is possible under certain conditions on the variety of the associated homogeneous ideal. We present some variants of these results, as well as generalizations to subvarieties of ?..
15#
發(fā)表于 2025-3-24 03:31:06 | 只看該作者
https://doi.org/10.1007/978-981-15-6763-6ly proved as a special case of the optimal version of the Ohsawa–Takegoshi extension theorem. We present here a purely one-dimensional approach that should be suited to readers not interested in several complex variables.
16#
發(fā)表于 2025-3-24 08:25:58 | 只看該作者
Peter Bühler,Patrick Schlaich,Dominik Sinnernected components of the coamoeba complement and critical points of the polynomial, an upper bound on the area of a planar coamoeba, and a recovered bound on the number of positive solutions of a fewnomial system.
17#
發(fā)表于 2025-3-24 14:33:35 | 只看該作者
Multimedia Applications: Protocol MOT,se, of a result by Nisse, Sottile and the author. We also give topological and partly algebraical characterizations of the amoeba and coamoeba in some special cases: . = . 1, . = 1 and, when . is even, . = ./2, in the last case with a certain emphasis on the example . = 4.
18#
發(fā)表于 2025-3-24 18:41:55 | 只看該作者
Mats Andersson,Jan Boman,Ragnar SigurdssonIntroduces the reader to the theory of functions of several complex variables.Explains geometric ideas.Presents papers on the border between analysis and geometry
19#
發(fā)表于 2025-3-24 20:17:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:11:44 | 只看該作者
Amoebas and Coamoebas of Linear Spacesnsion, and we show that if a .-dimensional very affine linear space in (?*). is generic, then the dimension of its (co)amoeba is equal to min{2., .}. Moreover, we prove that the volume of its coamoeba is equal to π.. In addition, if the space is generic and real, then the volume of its amoeba is equal to π./2..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝坻区| 安陆市| 仁寿县| 鹤庆县| 南华县| 丰镇市| 宁城县| 巴林左旗| 西峡县| 浮梁县| 云梦县| 新营市| 乌鲁木齐市| 新余市| 青浦区| 麦盖提县| 镇雄县| 青田县| 浦城县| 乌审旗| 东阳市| 古浪县| 大余县| 阿克| 云和县| 中山市| 和政县| 舒城县| 怀安县| 保靖县| 安塞县| 皮山县| 上栗县| 长春市| 四会市| 礼泉县| 新民市| 竹山县| 凭祥市| 峨边| 漠河县|