找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analyse Convexe et Ses Applications; Comptes Rendus, Janv Jean-Pierre Aubin Conference proceedings 1974 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
11#
發(fā)表于 2025-3-23 11:24:27 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:52 | 只看該作者
0075-8442 Overview: 978-3-662-00638-2Series ISSN 0075-8442 Series E-ISSN 2196-9957
13#
發(fā)表于 2025-3-23 18:12:17 | 只看該作者
Higgs fields and superconnections,vide de Q et A une multi-application de X dans X dont le domaine (ensemble des x où A(x) ≠ ?) contient Q. On se propose. de résoudre numériquement l’inégalité variationnelle:.On supposera que l’ensemble des solutions de P, noté M, est non vide.
14#
發(fā)表于 2025-3-23 22:13:51 | 只看該作者
Geometric aspects of the feynman integral,rsat — Lions [1]); dans le cas stationnaire les IQV peuvent schématiquement se formuler ainsi: étant donnés un espace de Hilbert V sur R, une forme bilinéaire continue a(u,v) sur V et une famille d’ensembles convexes fermés non vides de V soit K(v), v ? V, on cherche un élément u tel que:
15#
發(fā)表于 2025-3-24 06:04:21 | 只看該作者
Geometric aspects of the feynman integral,utre part, on donne deux résultats très proches d’un résultat de UHL ([22]) sur l’intégration de fonctions vectorielles, liées à un couple d’espaces d’ORLICZ associés (Exemple de couple d’espaces de K?THE associés munis d’une structure d’espace de Banach ([11])).
16#
發(fā)表于 2025-3-24 07:27:56 | 只看該作者
17#
發(fā)表于 2025-3-24 11:09:25 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:20 | 只看該作者
V. De Alfaro,S. Fubini,G. FurlanNous considérons un jeu à 2 personnes de somme nulle, donné sous sa forme normale:. Les ensembles X et Y représentent les stratégies . des 2 joueurs et g la fonction de gain que le premier joueur cherche à maximiser.
19#
發(fā)表于 2025-3-24 19:49:01 | 只看該作者
The use of exterior forms in field theory,Soit V un espace de Banach réflexif réel, V* son dual topologique, T une application monotone de V dans V*; nous nous intéressons à l’équation (1) Tu = f, f donné dans V*.
20#
發(fā)表于 2025-3-25 01:53:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宽城| 阿尔山市| 峡江县| 武汉市| 宁阳县| 荃湾区| 汶上县| 台中县| 石渠县| 平安县| 莆田市| 清徐县| 楚雄市| 岳西县| 甘谷县| 通榆县| 嘉禾县| 庆城县| 浏阳市| 福海县| 营口市| 东山县| 遂宁市| 永平县| 贡山| 白玉县| 巴中市| 融水| 高邑县| 辽源市| 资兴市| 襄樊市| 锦屏县| 保山市| 那曲县| 金秀| 宾阳县| 韶关市| 仲巴县| 香格里拉县| 阳信县|