找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Outline of Set Theory; James M. Henle Book 1986 Springer-Verlag New York Inc. 1986 Finite.calculus.cardinals.mathematics.ordinal.set th

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 05:23:03 | 只看該作者
Aufrüstung und KriegsvorbereitungThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
22#
發(fā)表于 2025-3-25 09:17:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80854-7Our next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
24#
發(fā)表于 2025-3-25 16:14:43 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:50 | 只看該作者
Die Aufl?sung der naturalistischen ?sthetikWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
26#
發(fā)表于 2025-3-26 00:48:46 | 只看該作者
https://doi.org/10.1007/978-3-658-27463-4We develop in this chapter a second set of infinite numbers to measure the . (as opposed to the . of infinite sets.
27#
發(fā)表于 2025-3-26 07:17:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:26:40 | 只看該作者
René K?nig Schriften. Ausgabe letzter HandWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
29#
發(fā)表于 2025-3-26 13:27:00 | 只看該作者
https://doi.org/10.1007/978-3-322-99013-6 # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东丰县| 甘孜县| 靖州| 建水县| 巴彦淖尔市| 五河县| 麦盖提县| 松潘县| 霍邱县| 苍溪县| 天镇县| 大理市| 宝清县| 个旧市| 兰西县| 佛山市| 千阳县| 潜山县| 建昌县| 宜城市| 民勤县| 五常市| 英山县| 苍梧县| 宜兰县| 万载县| 凌云县| 广西| 马尔康县| 绍兴县| 钟山县| 六安市| 新野县| 金川县| 莒南县| 桂平市| 塔河县| 长阳| 怀柔区| 扎鲁特旗| 阳东县|