找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Algebraic Geometry; Karen E. Smith,Lauri Kahanp??,William Traves Textbook 2000 Springer Science+Business Media New York 2

[復制鏈接]
樓主: 管玄樂團
11#
發(fā)表于 2025-3-23 11:42:06 | 只看該作者
12#
發(fā)表于 2025-3-23 14:20:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:21 | 只看該作者
Otto K?rner Dr. med., Dr. phil. h. c.Much of the power and rigor of algebraic geometry comes from the fact that geometric questions can be translated into purely algebraic problems.
14#
發(fā)表于 2025-3-23 23:10:42 | 只看該作者
,Die Gruppe der Schlangen (??ιε?),Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
15#
發(fā)表于 2025-3-24 03:31:31 | 只看該作者
,St?rungen des visuellen Erkennens,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
16#
發(fā)表于 2025-3-24 06:40:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:15:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
Projective Varieties,Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
19#
發(fā)表于 2025-3-24 19:39:35 | 只看該作者
Classical Constructions,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
20#
發(fā)表于 2025-3-25 01:42:03 | 只看該作者
Birational Geometry,In 1964, Heisuke Hironaka proved a fundamental theorem: Every quasi-projective variety can be ., or equivalently, every variety is “birationally equivalent” to a smooth projective variety. Before we can state this theorem, we need to introduce some new ideas.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 01:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富民县| 会东县| 望奎县| 太仆寺旗| 安化县| 光山县| 遂宁市| 阿坝县| 盐亭县| 崇义县| 巍山| 历史| 霞浦县| 张家港市| 光泽县| 东乡| 扎兰屯市| 贵溪市| 丰镇市| 酒泉市| 钟祥市| 盖州市| 清镇市| 怀宁县| 普洱| 都匀市| 高要市| 大洼县| 枞阳县| 上高县| 英山县| 山阳县| 清水河县| 阳山县| 鹤庆县| 五指山市| 迁安市| 远安县| 高雄县| 古田县| 驻马店市|