找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introductory Guide to Computational Methods for the Solution of Physics Problems; With Emphasis on Spe George Rawitscher,Victo dos Santo

[復制鏈接]
樓主: MASS
11#
發(fā)表于 2025-3-23 10:55:23 | 只看該作者
https://doi.org/10.1007/978-3-322-98672-6er-Cromer method. The emphasis here is on algorithm errors, and an explanation of what is meant by the “order” of the error. We show that the Euler method introduces an error of order 2, denoted as . while the latter presents errors of order .. We finish the chapter by applying the methods to two im
12#
發(fā)表于 2025-3-23 15:36:16 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:43 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:49 | 只看該作者
https://doi.org/10.1007/978-3-642-71903-5pressions in terms of the powers of the variable ., where ., and the mesh points required for the Gauss–Chebyshev integration expression described in Chap.?.. We also point out the advantage of the expansion into this set of functions, as their truncation error is spread uniformly across the . inter
15#
發(fā)表于 2025-3-24 05:15:08 | 只看該作者
https://doi.org/10.1007/978-3-662-41281-7the advantages of working with the integral equation, called Lippmann–Schwinger (L–S). We show how a numerical solution of such an equation can be obtained by expanding the wave function in terms of Chebyshev polynomials, and give an example for a simple one-dimensional Schr?dinger equation. This me
16#
發(fā)表于 2025-3-24 07:08:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:14 | 只看該作者
Die Bestimmung der Umtriebszeitction is described in an efficient way by its amplitude .(.) and the wave phase .. Since each of these quantities vary monotonically and slowly with distance, they are much easier to calculate than the wave function itself. An iterative method to solve the non-linear equation for . is described, and
18#
發(fā)表于 2025-3-24 15:47:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:22:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南丹县| 安图县| 漳平市| 富平县| 大关县| 台北县| 澜沧| 安乡县| 麻城市| 乾安县| 田阳县| 平度市| 辽中县| 陵水| 台州市| 通化县| 定边县| 德清县| 工布江达县| 兴海县| 休宁县| 祁阳县| 礼泉县| 沛县| 桑日县| 宽甸| 邮箱| 克拉玛依市| 铅山县| 昌邑市| 南华县| 麻江县| 潮州市| 烟台市| 顺义区| 乌什县| 楚雄市| 海兴县| 龙里县| 肥东县| 郸城县|