找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Kolmogorov–Bernoulli Equivalence; Gabriel Ponce,Régis Var?o Book 2019 The Author(s), under exclusive licence to Spr

[復(fù)制鏈接]
樓主: estrange
11#
發(fā)表于 2025-3-23 11:11:24 | 只看該作者
https://doi.org/10.1007/978-3-531-90649-2is chapter is to show that Kolmogorov and Bernoulli property can be obtained for a much more general class of dynamical systems, namely those admitting a global uniform hyperbolic behavior, i.e., the Anosov systems (Definition 4.1). Anosov systems play a crucial role in smooth ergodic theory being t
12#
發(fā)表于 2025-3-23 15:31:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:07 | 只看該作者
Introduction,c hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).
14#
發(fā)表于 2025-3-23 23:34:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:46 | 只看該作者
State of the Art,ve a smooth measure and admit some level of hyperbolicity. We define the class of non-uniformly hyperbolic diffeomorphisms (resp. flows), the class of smooth maps (resp. flows) with singularities, and the class of partially hyperbolic diffeomorphisms derived from Anosov, and present the state of art
18#
發(fā)表于 2025-3-24 15:53:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:09:04 | 只看該作者
2191-8198 ith this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area..978-3-030-27389-7978-3-030-27390-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 陈巴尔虎旗| 会东县| 新巴尔虎右旗| 武山县| 阜新市| 康平县| 时尚| 凤庆县| 湘潭市| 文山县| 山阴县| 新和县| 周口市| 时尚| 庆安县| 兴和县| 宕昌县| 衢州市| 同心县| 台山市| 宣武区| 南漳县| 长岭县| 香格里拉县| 汝南县| 岐山县| 栾城县| 凭祥市| 商都县| 丰县| 鹰潭市| 青神县| 黄陵县| 柳河县| 饶阳县| 上饶市| 论坛| 海伦市| 通榆县| 阳泉市|