找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Smooth Manifolds; Manjusha Majumdar,Arindam Bhattacharyya Textbook 2023 The Editor(s) (if applicable) and The Author(s)

[復制鏈接]
查看: 49068|回復: 35
樓主
發(fā)表于 2025-3-21 18:19:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Smooth Manifolds
影響因子2023Manjusha Majumdar,Arindam Bhattacharyya
視頻videohttp://file.papertrans.cn/156/155481/155481.mp4
發(fā)行地址Discusses topics on differential forms, Lie group and action of a Lie group on a smooth manifold.Includes topics in calculus on Rn, manifold theory and one-parameter group of transformations.Presents
圖書封面Titlebook: An Introduction to Smooth Manifolds;  Manjusha Majumdar,Arindam Bhattacharyya Textbook 2023 The Editor(s) (if applicable) and The Author(s)
影響因子Targeted to graduate students of mathematics, this book discusses major topics like the Lie group in the study of smooth manifolds.?It is said that mathematics can be learned by solving problems and not only by just reading it. To serve this purpose, this book contains a sufficient number of examples and exercises after each section in every chapter. Some of the exercises are routine ones for the general understanding of topics. The book also contains hints to difficult exercises. Answers to all exercises are given at the end of each section.?It also provides proofs of all theorems in a lucid manner. The only pre-requisites are good working knowledge of point-set topology and linear algebra..
Pindex Textbook 2023
The information of publication is updating

書目名稱An Introduction to Smooth Manifolds影響因子(影響力)




書目名稱An Introduction to Smooth Manifolds影響因子(影響力)學科排名




書目名稱An Introduction to Smooth Manifolds網(wǎng)絡公開度




書目名稱An Introduction to Smooth Manifolds網(wǎng)絡公開度學科排名




書目名稱An Introduction to Smooth Manifolds被引頻次




書目名稱An Introduction to Smooth Manifolds被引頻次學科排名




書目名稱An Introduction to Smooth Manifolds年度引用




書目名稱An Introduction to Smooth Manifolds年度引用學科排名




書目名稱An Introduction to Smooth Manifolds讀者反饋




書目名稱An Introduction to Smooth Manifolds讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:22:00 | 只看該作者
地板
發(fā)表于 2025-3-22 08:12:04 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:31 | 只看該作者
6#
發(fā)表于 2025-3-22 13:23:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:25 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:45 | 只看該作者
Manjusha Majumdar,Arindam BhattacharyyaDiscusses topics on differential forms, Lie group and action of a Lie group on a smooth manifold.Includes topics in calculus on Rn, manifold theory and one-parameter group of transformations.Presents
9#
發(fā)表于 2025-3-23 03:09:24 | 只看該作者
http://image.papertrans.cn/a/image/155481.jpg
10#
發(fā)表于 2025-3-23 08:51:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
元江| 葵青区| 司法| 温泉县| 合作市| 林西县| 丰原市| 太仓市| 六枝特区| 灯塔市| 万全县| 元江| 广饶县| 淄博市| 通道| 内黄县| 太原市| 盐边县| 和顺县| 剑阁县| 玉山县| 古浪县| 金山区| 凤冈县| 宽城| 进贤县| 临泽县| 河津市| 永兴县| 甘肃省| 苍山县| 勐海县| 阿城市| 卢氏县| 客服| 庆城县| 西青区| 富顺县| 石门县| 微博| 银川市|