找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Riemann-Finsler Geometry; D. Bao,S.-S. Chern,Z. Shen Textbook 2000 Springer Science+Business Media New York 2000 Calc.D

[復制鏈接]
樓主: Concave
21#
發(fā)表于 2025-3-25 07:18:08 | 只看該作者
https://doi.org/10.1007/978-3-658-14309-1In §3.9, we encountered the flag curvature. As the name suggests, this quantity (denoted .) involves a location . ? ., a flagpole ?:= with . ? ..., and a transverse edge . ? .... The precise formula is quite elegantly given by (3.9.3): ..
22#
發(fā)表于 2025-3-25 09:17:04 | 只看該作者
https://doi.org/10.1007/978-3-8349-8493-7A .. on a manifold . is a family of inner products {..}.∈. such that the quantities . are smooth in local coordinates. The Finsler function .(.) of a Riemannian manifold has the characteristic structure ..
23#
發(fā)表于 2025-3-25 15:12:38 | 只看該作者
24#
發(fā)表于 2025-3-25 17:09:27 | 只看該作者
25#
發(fā)表于 2025-3-25 21:48:21 | 只看該作者
Curvature and Schur’s LemmaThe curvature 2-forms of the Chern connection are ..
26#
發(fā)表于 2025-3-26 00:37:41 | 只看該作者
27#
發(fā)表于 2025-3-26 05:31:06 | 只看該作者
The Cartan—Hadamard Theorem and Rauch’s First TheoremIn §5.5, we estimated the growth of certain Jacobi fields using the first few terms of a power series. That was valid only for a short time interval. In the present section, we use a more delicate approach—known as a comparison argument. The resulting estimate holds for long time intervals.
28#
發(fā)表于 2025-3-26 11:00:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:48:35 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:16 | 只看該作者
Constant Flag Curvature Spaces and Akbar-Zadeh’s TheoremIn §3.9, we encountered the flag curvature. As the name suggests, this quantity (denoted .) involves a location . ? ., a flagpole ?:= with . ? ..., and a transverse edge . ? .... The precise formula is quite elegantly given by (3.9.3): ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 12:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新龙县| 上林县| 个旧市| 玉山县| 新兴县| 双桥区| 原平市| 阿克苏市| 中牟县| 广东省| 九龙县| 商丘市| 敦煌市| 图木舒克市| 灌阳县| 松滋市| 磴口县| 商都县| 海口市| 石首市| 霸州市| 鄯善县| 天峨县| 凤台县| 巴东县| 响水县| 彩票| 天全县| 南汇区| 怀远县| 铜川市| 祁门县| 石泉县| 紫云| 玉山县| 大冶市| 遂宁市| 新宾| 彰化县| 巨野县| 越西县|