找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Piecewise Smooth Dynamics; Paul Glendinning,Mike R. Jeffrey,Elena Bossolini,J Textbook 2019 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 11265|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:27:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Piecewise Smooth Dynamics
影響因子2023Paul Glendinning,Mike R. Jeffrey,Elena Bossolini,J
視頻videohttp://file.papertrans.cn/156/155426/155426.mp4
發(fā)行地址Presents classical theory and some of the newest techniques.Discusses a number of future challenges.Authored by two highly recognized experts
學(xué)科分類Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: An Introduction to Piecewise Smooth Dynamics;  Paul Glendinning,Mike R. Jeffrey,Elena Bossolini,J Textbook 2019 Springer Nature Switzerland
影響因子.This book is aimed at mathematicians, scientists, and engineers, studying models that involve a discontinuity, or studying the theory of nonsmooth systems for its own sake. It is divided in two complementary courses: piecewise smooth flows and maps, respectively. Starting from well known theoretical results, the authors bring the reader into the latest challenges in the field, going through stability analysis, bifurcation, singularities, decomposition theorems and an introduction to kneading theory. Both courses contain many examples which illustrate the theoretical concepts that are introduced.?.
Pindex Textbook 2019
The information of publication is updating

書目名稱An Introduction to Piecewise Smooth Dynamics影響因子(影響力)




書目名稱An Introduction to Piecewise Smooth Dynamics影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Piecewise Smooth Dynamics網(wǎng)絡(luò)公開度




書目名稱An Introduction to Piecewise Smooth Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Piecewise Smooth Dynamics被引頻次




書目名稱An Introduction to Piecewise Smooth Dynamics被引頻次學(xué)科排名




書目名稱An Introduction to Piecewise Smooth Dynamics年度引用




書目名稱An Introduction to Piecewise Smooth Dynamics年度引用學(xué)科排名




書目名稱An Introduction to Piecewise Smooth Dynamics讀者反饋




書目名稱An Introduction to Piecewise Smooth Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:31 | 只看該作者
2297-0304 osition theorems and an introduction to kneading theory. Both courses contain many examples which illustrate the theoretical concepts that are introduced.?.978-3-030-23688-5978-3-030-23689-2Series ISSN 2297-0304 Series E-ISSN 2297-0312
板凳
發(fā)表于 2025-3-22 01:39:40 | 只看該作者
Piecewise-smooth Maps,. Other classes exist, but these two form the basis for most studies. The decision about how to define dynamics on the boundaries of the regions can be a bit awkward and will involve us in some little technical issues later.
地板
發(fā)表于 2025-3-22 06:19:10 | 只看該作者
Textbook 2019stems for its own sake. It is divided in two complementary courses: piecewise smooth flows and maps, respectively. Starting from well known theoretical results, the authors bring the reader into the latest challenges in the field, going through stability analysis, bifurcation, singularities, decompo
5#
發(fā)表于 2025-3-22 09:48:19 | 只看該作者
Textbook 2019l results, the authors bring the reader into the latest challenges in the field, going through stability analysis, bifurcation, singularities, decomposition theorems and an introduction to kneading theory. Both courses contain many examples which illustrate the theoretical concepts that are introduced.?.
6#
發(fā)表于 2025-3-22 13:47:52 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:26 | 只看該作者
Piecewise-smooth Maps,osures of these regions is the whole space, then a piecewise-smooth map is a map on this partition which is defined by a different smooth function on each region. Note that a piecewise-smooth map may be discontinuous across boundaries, or it may be continuous but the Jacobian matrix is discontinuous
8#
發(fā)表于 2025-3-23 00:20:45 | 只看該作者
,Gibt es beim Manne ?Wechseljahre“?,This course is about the geometry of piecewise-smooth dynamical systems. The solutions of a system of ordinary differential equations, such as . where . is some .-dimensional vector or variable, and . is an .-dimensional vector field, can be pictured as trajectories (or .) in space (for example, . or some subset of it).
9#
發(fā)表于 2025-3-23 01:48:57 | 只看該作者
Piecewise-smooth Flows,This course is about the geometry of piecewise-smooth dynamical systems. The solutions of a system of ordinary differential equations, such as . where . is some .-dimensional vector or variable, and . is an .-dimensional vector field, can be pictured as trajectories (or .) in space (for example, . or some subset of it).
10#
發(fā)表于 2025-3-23 08:50:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 光泽县| 大足县| 皋兰县| 聊城市| 柏乡县| 梅河口市| 甘孜| 赫章县| 广水市| 阳西县| 扎兰屯市| 泾川县| 蓬莱市| 榕江县| 颍上县| 兴仁县| 绥芬河市| 巴青县| 交口县| 桂林市| 塔城市| 昆山市| 仙桃市| 西华县| 龙川县| 英山县| 璧山县| 延津县| 远安县| 本溪市| 通榆县| 嘉荫县| 洞口县| 肇东市| 高邮市| 农安县| 淳安县| 军事| 个旧市| 新邵县|