找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Optimal Control of FBSDE with Incomplete Information; Guangchen Wang,Zhen Wu,Jie Xiong Book 2018 The Author(s), under e

[復(fù)制鏈接]
樓主: 變成小松鼠
21#
發(fā)表于 2025-3-25 06:57:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:22 | 只看該作者
978-3-319-79038-1The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nat
23#
發(fā)表于 2025-3-25 14:06:04 | 只看該作者
Filtering of BSDE and FBSDE, with incomplete information. We first state a theorem on the stochastic filtering of a general stochastic process. The proof of that result can be found in Liptser and Shiyayev [49], so we omit it here. Then, we apply this result to the stochastic filtering for the solutions to BSDEs in Section?. and to those for FBSDEs in Section?..
24#
發(fā)表于 2025-3-25 17:50:24 | 只看該作者
Optimal Control of Fully Coupled FBSDE with Partial Information,e convex variation and the duality technique, we derive a stochastic maximum principle and two verification theorems for optimality of Problem A. As an application of the optimality conditions, we solve explicitly an LQ optimal control problem and a cash management problem.
25#
發(fā)表于 2025-3-25 23:48:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:11:49 | 只看該作者
27#
發(fā)表于 2025-3-26 04:35:04 | 只看該作者
Book 2018rmation is not complete.?The aim of this book is to fill this gap...This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance..
28#
發(fā)表于 2025-3-26 08:30:14 | 只看該作者
29#
發(fā)表于 2025-3-26 13:59:08 | 只看該作者
Die vorsokratischen Philosopheno versions of the stochastic maximum principle for the characterization of the optimal control. To demonstrate the applicability, we work out an illustrative example within the framework of recursive utility and then solve it via the stochastic maximum principle and the stochastic filtering.
30#
發(fā)表于 2025-3-26 16:53:47 | 只看該作者
Optimal Control of FBSDE with Partially Observable Information,o versions of the stochastic maximum principle for the characterization of the optimal control. To demonstrate the applicability, we work out an illustrative example within the framework of recursive utility and then solve it via the stochastic maximum principle and the stochastic filtering.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特右旗| 玛曲县| 洛南县| 金山区| 明星| 含山县| 青龙| 常熟市| 潮安县| 武穴市| 株洲市| 滨海县| 佳木斯市| 海林市| 多伦县| 谢通门县| 克东县| 慈溪市| 镇雄县| 大冶市| 容城县| 三亚市| 大同县| 荔浦县| 黑龙江省| 筠连县| 龙岩市| 康马县| 黑龙江省| 剑河县| 灌南县| 河间市| 襄城县| 潼关县| 长海县| 湘乡市| 全州县| 龙川县| 彭阳县| 砀山县| 万年县|