找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Nonlinear Functional Analysis and Elliptic Problems; Antonio Ambrosetti,David Arcoya Textbook 2011 Springer Science+Bus

[復制鏈接]
樓主: GLAZE
31#
發(fā)表于 2025-3-26 21:58:22 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:45 | 只看該作者
33#
發(fā)表于 2025-3-27 09:00:44 | 只看該作者
34#
發(fā)表于 2025-3-27 13:11:34 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
35#
發(fā)表于 2025-3-27 16:22:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:51 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:21 | 只看該作者
38#
發(fā)表于 2025-3-28 06:06:31 | 只看該作者
Das Problem und seine Untersuchung,at infinity. It will be shown that, according to the properties of the nonlinearity, we can use the global inversion theorem (to get existence and uniqueness) or topological degree or else critical point theory.
39#
發(fā)表于 2025-3-28 09:29:57 | 只看該作者
https://doi.org/10.1007/978-3-663-14805-0ar problems. For this class of equations it is quite natural to use the bifurcation from infinity. The classical Landesman—Lazer existence result is found by this method as well as by using a variational approach. The bifurcation from infinity also leads to proving the anti-maximum principle.
40#
發(fā)表于 2025-3-28 14:21:40 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
招远市| 洛川县| 长治县| 探索| 松江区| 嵊泗县| 阿图什市| 黄骅市| 朝阳县| 理塘县| 舟山市| 德兴市| 当雄县| 东乌珠穆沁旗| 蓝山县| 永丰县| 沙湾县| 桦甸市| 开平市| 北海市| 咸阳市| 叶城县| 平顺县| 阿尔山市| 双流县| 子洲县| 江华| 友谊县| 平潭县| 莲花县| 宁乡县| 色达县| 凤庆县| 江口县| 白水县| 黄平县| 石棉县| 万宁市| 宁阳县| 来安县| 霍州市|