找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Modern Variational Techniques in Mechanics and Engineering; B. D. Vujanovic,T. M. Atanackovic Textbook 2004 Springer Sc

[復制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:56:21 | 只看該作者
https://doi.org/10.1007/978-3-322-83450-8ilton canonical differential equations . UPi oq, where .(. , ...,.,.l, ...,.) is th e Hamiltonian function. In writing (2.1.1) we assumed that the nonconservative (nonpotential) generalized forces are equal to zero :
12#
發(fā)表于 2025-3-23 15:29:23 | 只看該作者
Die Vernetzung sozialer Einheitenof conservat ive and purely nonconservative dynamical systems. The basic idea of this approach is to consider the transformation properties of the Lagrange-D’Alembert principle with respect to the infinite simaltransform at ion of the generalized coordinates and time. It is of interest to note that
13#
發(fā)表于 2025-3-23 19:00:27 | 只看該作者
https://doi.org/10.1007/978-3-476-03451-9method for solving the canonical differential equat ions of mot ion. In addition, a variety of approximate methods can be built up , based upo n this method , for solving nonlinear problems for which an exact, complete solu tion of the Hamilton-J acobi nonlinear partial differential equa t ion is no
14#
發(fā)表于 2025-3-23 23:17:40 | 只看該作者
https://doi.org/10.1007/978-3-476-03451-9e is based upon the . characteristics of motion; that is, the relations between its scalar and vector characteristics are considered simultaneously in one particular inst ant of time. The problem of describing the global characteristics of motion has been reduced to the integration of differential e
15#
發(fā)表于 2025-3-24 05:21:04 | 只看該作者
https://doi.org/10.1007/978-3-476-03451-9 We shall cons ider in particular the cases in which the initi al or terminal configur at ions (or both) ar e not sp ecified . Also, it may happen that t he time interval in which the evolut iona ry process is t aking place is not given . For these cases the Hamiltonian principle usually produces ch
16#
發(fā)表于 2025-3-24 07:09:58 | 只看該作者
https://doi.org/10.1007/978-3-663-16065-6r of degrees of freedom of a dynamical system. In this chapter we will consider several import ant situations in which the generalized coordinates are . but are restricted by given auxiliary conditions. Namely, it is not uncommon in th e analysis of applied variational problems to be faced with the
17#
發(fā)表于 2025-3-24 11:17:45 | 只看該作者
https://doi.org/10.1007/978-0-8176-8162-3Optimal control; Transformation; calculus; dynamical systems; ksa; mechanics; optimization; stability
18#
發(fā)表于 2025-3-24 16:03:00 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:20 | 只看該作者
https://doi.org/10.1007/978-3-663-16065-6In this section we shall use the results presented so far to formulate several variational principles for t he equations describing deformations and the optimal shape of elastic columns. We shall use the classical (Bernoulli-Euler) rod theory as well as generalized rod theories. The variational principles that we will formulate will be used to
20#
發(fā)表于 2025-3-25 01:08:07 | 只看該作者
Variational Principles for Elastic Rods and ColumnsIn this section we shall use the results presented so far to formulate several variational principles for t he equations describing deformations and the optimal shape of elastic columns. We shall use the classical (Bernoulli-Euler) rod theory as well as generalized rod theories. The variational principles that we will formulate will be used to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
祥云县| 芦山县| 郸城县| 广德县| 美姑县| 兴业县| 呼图壁县| 丹巴县| 五常市| 疏勒县| 陕西省| 甘德县| 闸北区| 清河县| 曲水县| 兖州市| 临夏市| 大竹县| 三江| 深泽县| 冷水江市| 慈溪市| 右玉县| 天峨县| 罗甸县| 资溪县| 乌兰察布市| 府谷县| 宝应县| 黎平县| 晋中市| 凤山市| 砀山县| 陇川县| 徐闻县| 新和县| 青河县| 内丘县| 鄂尔多斯市| 茂名市| 苍溪县|