找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[復(fù)制鏈接]
樓主: 口語
21#
發(fā)表于 2025-3-25 04:55:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:34 | 只看該作者
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
23#
發(fā)表于 2025-3-25 12:38:31 | 只看該作者
https://doi.org/10.1007/978-3-642-51887-4f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
24#
發(fā)表于 2025-3-25 17:43:37 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:26 | 只看該作者
,Zitierte und weiterführende Literatur,In this chapter, we discuss the basic notions and results from the theory of strongly regular and distance-regular graphs. Emphasis will be on those results that will have implications to the study of point-line geometries. A more extensive treatment of these families of graphs can be found in the books [6, 25, 69, 70].
26#
發(fā)表于 2025-3-26 02:27:27 | 只看該作者
,Zitierte und weiterführende Literatur,There is an impressive literature about (substructures of) projective spaces, see e.g. [81–83]. This chapter is devoted to the study of some topics of this extensive research field.
27#
發(fā)表于 2025-3-26 06:22:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:28 | 只看該作者
https://doi.org/10.1007/978-3-662-33097-5In “classical polar geometry”, two families of mathematical objects were studied: the collection of subspaces of a Desarguesian projective space that are totally isotropic with respect to a given polarity; the collection of subspaces of a projective space over a field that are contained in a given nonsingular quadric.
29#
發(fā)表于 2025-3-26 14:40:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 平武县| 太康县| 泰来县| 衡南县| 萨嘎县| 祁东县| 合肥市| 冀州市| 光山县| 沈丘县| 十堰市| 喀什市| 介休市| 松潘县| 永清县| 龙游县| 沿河| 北京市| 徐水县| 抚宁县| 盖州市| 东阿县| 平度市| 克拉玛依市| 永清县| 迭部县| 炉霍县| 德兴市| 安新县| 高陵县| 江达县| 开江县| 宜兴市| 达拉特旗| 惠水县| 剑河县| 沙雅县| 明光市| 玉门市| 绩溪县|