找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Frames and Riesz Bases; Ole Christensen Textbook 20031st edition Springer Science+Business Media New York 2003 Hilbert

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:29:27 | 只看該作者
https://doi.org/10.1007/978-3-642-92418-7ame in both cases, namely to consider a family of elements such that all vectors in the considered space can be expressed in a unique way as a linear combination of these elements. In the infinite-dimensional case the situation is complicated: we are forced to work with infinite series, and differen
12#
發(fā)表于 2025-3-23 15:26:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:09 | 只看該作者
https://doi.org/10.1007/978-3-642-47780-5herefore it is important to know that certain conditions on a Gabor frame {(.....}.∈? in fact imply that we can construct a frame for ..(?) having a similar structure. The relevant conditions were discovered by Janssen, and the main part of this chapter will deal with his results..One can also consi
14#
發(fā)表于 2025-3-23 23:17:58 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:38 | 只看該作者
Die Controle des WirthschaftsbetriebesThe next chapters will deal with generalizations of the basis concept, so it is natural to ask why they are needed. Bases exist in all separable Hilbert spaces and in practically all Banach spaces of interest, so why do we have to search for generalizations?
16#
發(fā)表于 2025-3-24 08:07:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:19:20 | 只看該作者
Die Aufstellung des BetriebsplanesThe previous chapters have concentrated on general frame theory. We have only seen a few concrete frames, and most of them were constructed via manipulations on an orthonormal basis for an arbitrary separable Hilbert space. An advantage of this approach is that we obtain universal constructions, valid in all Hilbert spaces.
18#
發(fā)表于 2025-3-24 18:27:55 | 只看該作者
https://doi.org/10.1007/978-3-642-92418-7The mathematical theory for Gabor analysis in ..(?) is based on two classes of operators on ..(?), namely.
19#
發(fā)表于 2025-3-24 21:14:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:41 | 只看該作者
Wie der Zuwachs festzustellen ist,In this chapter we consider ., i.e., frames for ..(?) of the type {2..(2.. ? .)}.. Bases of this type were considered already in Section 3.8, where we also introduced the short notation {..}. and {.....}.. A frame of this type is said to be . by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 彝良县| 商城县| 宁阳县| 普格县| 库尔勒市| 嘉禾县| 茂名市| 政和县| 得荣县| 勐海县| 普格县| 商水县| 三河市| 郯城县| 安丘市| 黑龙江省| 三门县| 克什克腾旗| 海口市| 柳江县| 肥城市| 台北市| 织金县| 高安市| 耿马| 信宜市| 大港区| 澄江县| 嘉兴市| 长寿区| 萝北县| 屯门区| 韶山市| 深泽县| 大英县| 洞头县| 民县| 澄城县| 淮安市| 梅州市|