找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases; Analysis, Algorithms Francis X. Giraldo Textbook 2020 The Editor

[復制鏈接]
樓主: 正當理由
21#
發(fā)表于 2025-3-25 05:13:55 | 只看該作者
978-3-030-55071-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 09:32:53 | 只看該作者
Overview of Galerkin Methodsthe choices that we have at our disposal. We can categorize the possible methods as follows: .Generally speaking, the most widely used differential form method is the finite difference method while the most widely used integral form method is the Galerkin method (e.g., finite elements).
23#
發(fā)表于 2025-3-25 12:26:58 | 只看該作者
Numerical Integration in One Dimensionus . and . are element and trace integrals, respectively. By element integrals we mean either area or volume integrals in 2D and 3D, respectively. By trace integrals we mean integrals along the boundary of the element which could be line or surface area integrals in 2D and 3D, respectively.
24#
發(fā)表于 2025-3-25 19:28:11 | 只看該作者
1D Continuous Galerkin Methods for Elliptic Equationsonservation laws for both CG and DG. However, these types of equations are entirely hyperbolic (first order equations in these cases). In this chapter we learn how to use the CG method to discretize second order equations that are elliptic.
25#
發(fā)表于 2025-3-25 21:26:49 | 只看該作者
Interpolation in Multiple Dimensionso and three dimensions. In one dimension, there is no room to choose the shape of the domain. That is, in the domain .?∈?[?1, +1] we are constrained to line elements. However, in two dimensions this door is flung wide open and we are now free to choose all sorts of polygons as the basic building blocks of our interpolation.
26#
發(fā)表于 2025-3-26 04:01:38 | 只看該作者
2D Continuous Galerkin Methods for Hyperbolic Equationsly. In Ch. . we introduced the extension of the CG method to two dimensions by describing its implementation for elliptic partial differential equations (PDEs). In this chapter we extend the CG method for the application of hyperbolic equations in two dimensions. We also discuss the addition of diffusion operators.
27#
發(fā)表于 2025-3-26 08:24:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:05:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-26 22:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
磴口县| 永年县| 射阳县| 云安县| 清水河县| 葫芦岛市| 赣榆县| 平定县| 宁阳县| 静安区| 深州市| 明星| 屯昌县| 定结县| 嘉鱼县| 神池县| 布尔津县| 临西县| 汕头市| 孟村| 丰城市| 锦州市| 泸溪县| 观塘区| 盱眙县| 庄河市| 景东| 闽清县| 九寨沟县| 金昌市| 宣武区| 闵行区| 栖霞市| 平乐县| 舟曲县| 涿州市| 循化| 庆云县| 大田县| 行唐县| 烟台市|