找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
31#
發(fā)表于 2025-3-27 00:43:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:33 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or?difference equations. The composition of map generates the dynamics or flow of a discrete system.?The fixed points and their characters, some important theorems, periodic cycles, attractors,?Schwarzian derivative and its properties with examples are discussed at length.
34#
發(fā)表于 2025-3-27 09:57:33 | 只看該作者
https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
36#
發(fā)表于 2025-3-27 21:37:27 | 只看該作者
Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.
37#
發(fā)表于 2025-3-27 23:27:51 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:36 | 只看該作者
40#
發(fā)表于 2025-3-28 11:35:14 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features.?This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景谷| 会理县| 饶平县| 射洪县| 南澳县| 专栏| 德阳市| 连江县| 万州区| 景谷| 双牌县| 兴宁市| 缙云县| 外汇| 新沂市| 永安市| 巫溪县| 蓝田县| 康定县| 甘孜县| 阳信县| 怀远县| 承德县| 韶关市| 方山县| 湖南省| 海口市| 萍乡市| 昆明市| 翁源县| 秦安县| 永顺县| 兴化市| 景泰县| 山东省| 醴陵市| 库车县| 鞍山市| 九寨沟县| 泸定县| 内丘县|