找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Convex Polytopes; Arne Br?ndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt

[復(fù)制鏈接]
查看: 9507|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:40:12 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Convex Polytopes
影響因子2023Arne Br?ndsted
視頻videohttp://file.papertrans.cn/156/155197/155197.mp4
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: An Introduction to Convex Polytopes;  Arne Br?ndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt
影響因子The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under- stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970‘s by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac- terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen‘s conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P
Pindex Textbook 1983
The information of publication is updating

書目名稱An Introduction to Convex Polytopes影響因子(影響力)




書目名稱An Introduction to Convex Polytopes影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Convex Polytopes網(wǎng)絡(luò)公開度




書目名稱An Introduction to Convex Polytopes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Convex Polytopes被引頻次




書目名稱An Introduction to Convex Polytopes被引頻次學(xué)科排名




書目名稱An Introduction to Convex Polytopes年度引用




書目名稱An Introduction to Convex Polytopes年度引用學(xué)科排名




書目名稱An Introduction to Convex Polytopes讀者反饋




書目名稱An Introduction to Convex Polytopes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:06 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:14:07 | 只看該作者
Convex Sets,ndence, dimension, and linear mappings. We also assume familiarity with the standard inner product <·, ·> of ?., including the induced norm ∥ ∥, and elementary topological notions such as the interior int ., the closure cl ., and the boundary bd . of a subset . of ?..
6#
發(fā)表于 2025-3-22 13:59:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:22 | 只看該作者
8#
發(fā)表于 2025-3-22 21:45:28 | 只看該作者
Humor in der Beratung der Sozialen ArbeitConvex polytopes are the .-dimensional analogues of 2-dimensional convexpolygons and 3-dimensional convex polyhedra. The theme of this book isthe combinatorial theory of convex polytopes. Generally speaking, the combinatorialtheory deals with the numbers of faces of various dimensions(vertices, edges, etc.).
9#
發(fā)表于 2025-3-23 04:03:31 | 只看該作者
10#
發(fā)表于 2025-3-23 05:33:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴楚县| 左云县| 绍兴市| 崇仁县| 正镶白旗| 西丰县| 三河市| 库伦旗| 陵水| 乌鲁木齐市| 昌邑市| 玉林市| 岑溪市| 农安县| 岑巩县| 百色市| 自贡市| 曲沃县| 恩平市| 民勤县| 吉林省| 海安县| 台北市| 哈尔滨市| 玉门市| 塘沽区| 黄梅县| 台江县| 阳西县| 安多县| 定陶县| 荔波县| 台前县| 大新县| 绥阳县| 崇信县| 来宾市| 广丰县| 德兴市| 德州市| 长丰县|