找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Compressible Flows with Applications; Quasi-One-Dimensiona José Pontes,Norberto Mangiavacchi,Gustavo R. Anjos Book 2019

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:28:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:56 | 只看該作者
Soziale Kontrolle der Gegenwart,ns for the existence of Detached shocks are discussed. As an alternative approach, oblique shocks are discussed in terms of the upstream Mach number and of the downstream velocity components in the directions parallel and perpendicular to the incoming flow. The chapter ends with a discussion of Riemann problems.
23#
發(fā)表于 2025-3-25 15:40:12 | 只看該作者
24#
發(fā)表于 2025-3-25 16:21:39 | 只看該作者
Compressible Potential Flows, Differential Equations. In sequence, the chapter addresses sound propagation questions, including the numerical solution of the wave equation in one and two dimensions, in the frequency domains, using Finite Differences and Finite Elements methods.
25#
發(fā)表于 2025-3-25 23:56:43 | 只看該作者
One-Dimensional Compressible Flows,heat transfer in variable transversal section ducts, where the critical Mach number .?=?1 is not attained at ducts throat. In sequence, the chapter discusses the flow of gases in isothermal ducts, followed by pointing the analogy with open channel hydraulics.
26#
發(fā)表于 2025-3-26 01:06:48 | 只看該作者
Oblique Shocks,ns for the existence of Detached shocks are discussed. As an alternative approach, oblique shocks are discussed in terms of the upstream Mach number and of the downstream velocity components in the directions parallel and perpendicular to the incoming flow. The chapter ends with a discussion of Riemann problems.
27#
發(fā)表于 2025-3-26 06:32:51 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:20 | 只看該作者
30#
發(fā)表于 2025-3-26 19:19:07 | 只看該作者
Tobias Singelnstein,Peer Stolleted. A derivation is given for the pressure coefficient. The chapter discusses the problem of two-dimensional steady flow over a periodic-shaped wall both in the linear subsonic and supersonic regimes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙岩市| 铜山县| 新竹县| 清水河县| 伊通| 上虞市| 思南县| 荔波县| 阿拉善左旗| 商河县| 马尔康县| 云林县| 佛山市| 五台县| 新昌县| 黎川县| 大渡口区| 区。| 张北县| 义乌市| 徐汇区| 铅山县| 修武县| 阳春市| 南华县| 水富县| 屯昌县| 天柱县| 东方市| 福州市| 大田县| 万全县| 班玛县| 安塞县| 黔西县| 枣庄市| 紫云| 德江县| 黄平县| 伊金霍洛旗| 雅江县|