找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to C*-Algebras and the Classification Program; Karen R. Strung,Francesc Perera Textbook 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 涌出
31#
發(fā)表于 2025-3-26 23:47:37 | 只看該作者
32#
發(fā)表于 2025-3-27 01:33:24 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:05 | 只看該作者
Group C*-algebras and crossed products,The group C*-algebra and crossed product construction provide a plethora of interesting examples of C*-algebras. They provide links to harmonic analysis, topological dynamics, quantum groups, and beyond.
34#
發(fā)表于 2025-3-27 10:59:40 | 只看該作者
35#
發(fā)表于 2025-3-27 13:38:28 | 只看該作者
Quasidiagonality and tracial approximation,This chapter is somewhat different from the previous three chapters. Instead of constructing C*-algebras which we then show are simple (or find conditions under which they are simple), here we start with a simple C*-algebra and show it has a particular structure.
36#
發(fā)表于 2025-3-27 19:02:40 | 只看該作者
K-theory,It would be difficult to talk about the classification of C*-algebras without talking about K-theory. For the reader familiar with topological K-theory, K-theory for C*-algebras can be thought of its noncommutative version.
37#
發(fā)表于 2025-3-28 01:35:55 | 只看該作者
38#
發(fā)表于 2025-3-28 03:52:19 | 只看該作者
The Cuntz semigroup and strict comparison,We saw in Chapter 12 that via the K.-group of a C*-algebra we are able to determine important information by studying the structure of its projections. The more projections a C*-algebra has, the more information we can gain from its K-theory.
39#
發(fā)表于 2025-3-28 08:02:12 | 只看該作者
40#
發(fā)表于 2025-3-28 10:36:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 台东市| 三台县| 霸州市| 黄石市| 卢龙县| 全州县| 和平区| 玉环县| 东乌| 罗平县| 绵阳市| 手游| 大丰市| 康保县| 启东市| 柯坪县| 顺义区| 淮南市| 遂溪县| 个旧市| 河东区| 达尔| 遂溪县| 始兴县| 宁波市| 横峰县| 济源市| 章丘市| 文安县| 台北市| 大厂| 拉孜县| 武定县| 洛浦县| 苗栗市| 峨山| 宁南县| 甘肃省| 镇坪县| 乐亭县|