找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Basic Fourier Series; Sergei K. Suslov Book 2003 Springer Science+Business Media Dordrecht 2003 Complex analysis.Hyperg

[復(fù)制鏈接]
樓主: Hemochromatosis
21#
發(fā)表于 2025-3-25 03:51:28 | 只看該作者
22#
發(fā)表于 2025-3-25 08:58:29 | 只看該作者
Introduction of Basic Fourier Series,Our main objective in this chapter is to define basic Fourier series and to establish some elementary facts about them. In our presentation most of the material can be read independently from Chapters 3 and 4, we only assume that the reader is familiar with the basic exponential and basic trigonometric functions covered in Chapter 2.
23#
發(fā)表于 2025-3-25 15:10:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:10:08 | 只看該作者
Improved Asymptotics of Zeros,In Section 6.3 we derived the asymptotic formulas (6.3.14) and (6.3.15) for the zeros of the basic sine .. (.) and basic cosine .. ((.)) functions, respectively. In this chapter we shall find improved asymptotics for these zeros by a different method using the Lagrange inversion formula.
25#
發(fā)表于 2025-3-25 23:50:53 | 只看該作者
26#
發(fā)表于 2025-3-26 02:23:59 | 只看該作者
Basic Exponential and Trigonometric Functions,monic motion on a .-quadratic grid. Some of their elementary properties will be derived in order to form the basis for developing the theory of basic Fourier series and study some of their applications in the subsequent chapters.
27#
發(fā)表于 2025-3-26 06:19:54 | 只看該作者
Investigation of Basic Fourier Series,gonometric systems, and will establish several convenient tools, such as asymptotics of zeros, which are important for practical investigation of these series in the next chapters. Methods of summation and a few explicit examples of .-Fourier series will be also discussed among other things.
28#
發(fā)表于 2025-3-26 11:41:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:15:53 | 只看該作者
Sergei K. SuslovIncludes supplementary material:
30#
發(fā)表于 2025-3-26 17:58:50 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/a/image/155145.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆丰市| 鱼台县| 红安县| 八宿县| 阿克陶县| 津南区| 巴林左旗| 澜沧| 苏州市| 江孜县| 抚宁县| 新宾| 江阴市| 体育| 金沙县| 宿州市| 全州县| 鹿泉市| 玉环县| 雅安市| 尼木县| 报价| 和顺县| 东平县| 汝城县| 贵定县| 包头市| 阿拉善右旗| 新营市| 呼伦贝尔市| 遂昌县| 寻乌县| 汤阴县| 伊川县| 龙川县| 成安县| 兴文县| 永川市| 华容县| 老河口市| 岳阳县|