找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Anomalous Diffusion and Relaxation; Luiz Roberto Evangelista,Ervin Kaminski Lenzi Textbook 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:39:54 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:03 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:49 | 只看該作者
Wolfgang Hach,Viola Hach-Wunderleo build their mathematical description, emphasizing the approaches of Einstein?and Langevin. The treatment of Einstein?is extended and reformulated as a way to obtain new nonlinear diffusion?equations. This is done by exploring different functional forms of the jumping probability. After presenting
14#
發(fā)表于 2025-3-24 01:36:19 | 只看該作者
Die Rhetorik der Deutschlandpolitikh to the classical random walks or random flights problem. Then, a generalization of the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-Planck equation), is investigated, creating the conditions to discuss the central limit theorem?and a kind of its generalization. In
15#
發(fā)表于 2025-3-24 05:20:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:08 | 只看該作者
Die Spondylarthritis ankylopoetica,amental solution for the space-time fractional diffusion equation?involving the Caputo?operator in the time derivatives and the Riesz–Feller operator?in the space derivative. The solution of the Cauchy problem?can be expressed in terms of a Mellin–Barnes?representation for the Green’s function. Subs
17#
發(fā)表于 2025-3-24 12:41:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:16:45 | 只看該作者
https://doi.org/10.1007/978-3-662-66417-9ions are obtained to investigate the time evolution of the initial conditions and the asymptotic behavior in two-, three-, and non-integer dimensions as a tool to handle the anomalous spreading?of the wave function?and the anomalous behavior?of the underlying diffusive process. The problem of quantu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 05:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东城区| 新津县| 城步| 偃师市| 简阳市| 满洲里市| 承德县| 成都市| 无极县| 甘孜县| 聊城市| 旅游| 三明市| 怀仁县| 威远县| 濉溪县| 富民县| 大宁县| 本溪市| 当阳市| 南木林县| 宁武县| 浦城县| 长白| 瓮安县| 临猗县| 诸暨市| 石首市| 酒泉市| 疏勒县| 舒兰市| 鸡西市| 色达县| 鄯善县| 舞钢市| 沂水县| 邓州市| 醴陵市| 土默特左旗| 江孜县| 黑水县|