找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume III; Discrete Mathematics Antonio Caminha Muniz Neto Textbook 2018 Springer Internation

[復(fù)制鏈接]
樓主: 鏟除
61#
發(fā)表于 2025-4-1 02:23:19 | 只看該作者
62#
發(fā)表于 2025-4-1 07:54:33 | 只看該作者
More Counting Techniques,e number of elements of a finite union of finite sets. The presentation continues with the notion of . for, counting a certain number of configurations in two distinct ways, to infer some hidden result. Then, a brief discussion of equivalence relations and their role in counting problems follows. Am
63#
發(fā)表于 2025-4-1 10:52:00 | 只看該作者
64#
發(fā)表于 2025-4-1 14:42:43 | 只看該作者
65#
發(fā)表于 2025-4-1 21:31:43 | 只看該作者
Diophantine Equations,characterize all solutions. We also present to the reader the important ., which provides a frequently useful tool for showing that certain diophantine equations do not possess . solutions, in a way to be made precise. The aforementioned method is one of the major legacies of Pierre Simon de Fermat
66#
發(fā)表于 2025-4-1 22:43:04 | 只看該作者
Arithmetic Functions,ny arithmetic multiplicative functions we shall encounter here, two deserve all spotlights: the Euler function ., which will reveal itself to be an indispensable tool for basically all further theoretical developments, and the M?bius function ., which is essential to getting the celebrated . and its
67#
發(fā)表于 2025-4-2 06:51:00 | 只看該作者
The Relation of Congruence,e famous ., as well as its generalization, due to Euler. The pervasiveness of these two results in elementary Number Theory owes a great deal to the fact that they form the starting point for a systematic study of the behavior of the remainders of powers of a natural number . upon division by a give
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应城市| 鸡西市| 通辽市| 朔州市| 萝北县| 永胜县| 博野县| 合山市| 衡阳市| 武穴市| 台湾省| 台前县| 涡阳县| 天峻县| 胶州市| 固原市| 伊金霍洛旗| 乌兰县| 海兴县| 原阳县| 东丽区| 潢川县| 宁晋县| 濉溪县| 江口县| 奈曼旗| 涞源县| 沈阳市| 清丰县| 嘉定区| 苍梧县| 吴忠市| 临沧市| 平昌县| 左云县| 威海市| 易门县| 岢岚县| 漠河县| 吕梁市| 金秀|