找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Algebraic Geometric Approach to Separation of Variables; Konrad Sch?bel Book 2015 Springer Fachmedien Wiesbaden GmbH 2015 Killing tenso

[復(fù)制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 04:42:50 | 只看該作者
22#
發(fā)表于 2025-3-25 10:00:03 | 只看該作者
The generalisation: a solution for spheres of arbitrary dimension, which gives rise to a Lie bracket and hence to a Lie algebra generated by Killing tensors. On one hand, we can use the metric to identify the symmetric bilinear form K.. with a symmetric endomorphism ..
23#
發(fā)表于 2025-3-25 13:58:38 | 只看該作者
Von der Schallempfindung im allgemeinen the corresponding algebraic curvature tensors. To this end, we substitute (0.7) into (0.2) and both into (0.3) and then use the representation theory for general linear groups to get rid of the dependence on the base point in the manifold.
24#
發(fā)表于 2025-3-25 17:36:47 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:38:07 | 只看該作者
The proof of concept: a complete solution for the 3-dimensional sphere,Given a scalar product . on ., we can raise and lower indices. The symmetries (0.6a) and (0.6b) then allow us to regard an algebraic curvature tensor . on . as a symmetric endomorphism . on the space ?.. of 2-forms on . . Since we will frequently change between both interpretations, we denote endomorphisms by the same letter in boldface.
27#
發(fā)表于 2025-3-26 04:39:33 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:27 | 只看該作者
Specimen Collection and Analysisn burns (.), and burn wounds have figured prominently in wound-healing studies. One of the difficulties with human burn wound studies, however, has been the uncontrolled circumstance under which a patient acquires the burn wound: What was the temperature? What was the timing? What was the depth or extent?
30#
發(fā)表于 2025-3-26 20:18:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
容城县| 张掖市| 德保县| 瓮安县| 北宁市| 海盐县| 肇州县| 奉贤区| 宁河县| 台东县| 思茅市| 荆州市| 双鸭山市| 新建县| 九江市| 阿荣旗| 海盐县| 崇仁县| 宁武县| 华阴市| 抚州市| 耒阳市| 辽阳市| 海口市| 金寨县| 忻州市| 萨嘎县| 临武县| 饶河县| 西畴县| 庄河市| 正安县| 农安县| 南郑县| 荆门市| 香港| 屯留县| 贵定县| 南木林县| 沂水县| 察隅县|