找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Advanced Complex Analysis Problem Book; Topological Vector S Daniel Alpay Textbook 2015 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: MOURN
31#
發(fā)表于 2025-3-26 21:17:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:30:14 | 只看該作者
de Branges–Rovnyak SpacesThe de Branges–Rovnyak spaces are reproducing kernel spaces which appear in various fields, from operator theory to interpolation theory, stochastic processes and system theory. In this chapter we merely outline some of their elementary properties.
33#
發(fā)表于 2025-3-27 09:02:29 | 只看該作者
Bergman SpacesAs already said, Bergman spaces seem to form the first example of reproducing kernel Hilbert spaces of analytic functions. In this chapter we discuss the case of the disk and the polyanalytic cases. More involved cases, such as the annulus and the ellipse, are only mentioned .. We urge the reader to look at these cases.
34#
發(fā)表于 2025-3-27 10:46:46 | 只看該作者
35#
發(fā)表于 2025-3-27 16:37:55 | 只看該作者
Das Wachstum der lebendigen Masseinner product spaces. A distinguished class of Hilbert spaces, namely reproducing kernel Hilbert spaces, is studied at a later stage in Chapter .. These various notions play an important role in the third part of the book, dedicated to spaces of analytic functions and their operators.
36#
發(fā)表于 2025-3-27 18:22:01 | 只看該作者
Durch wieviel Lebensalter gehen wir?,eorem, and more generally, of its vector–valued version, namely the Beurling–Lax theorem. They also play a key role in the theory of linear systems. The fractional Hardy spaces play an important role in the theory of self–similar systems.
37#
發(fā)表于 2025-3-28 00:36:42 | 只看該作者
38#
發(fā)表于 2025-3-28 05:28:56 | 只看該作者
39#
發(fā)表于 2025-3-28 07:10:20 | 只看該作者
40#
發(fā)表于 2025-3-28 10:56:25 | 只看該作者
Hardy Spaceseorem, and more generally, of its vector–valued version, namely the Beurling–Lax theorem. They also play a key role in the theory of linear systems. The fractional Hardy spaces play an important role in the theory of self–similar systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 08:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元氏县| 海阳市| 星座| 剑川县| 库伦旗| 扶绥县| 石门县| 石楼县| 新竹县| 晋州市| 太白县| 淄博市| 阜新市| 筠连县| 垣曲县| 沐川县| 灌云县| 陇川县| 微博| 夏邑县| 高阳县| 凭祥市| 屯留县| 衡东县| 六枝特区| 平阳县| 平远县| 贵定县| 宁蒗| 杭州市| 通山县| 广水市| 祁东县| 兖州市| 泰和县| 隆安县| 周口市| 连城县| 揭东县| 龙泉市| 内乡县|