找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ambit Stochastics; Ole E. Barndorff-Nielsen,Fred Espen Benth,Almut E. Book 2018 Springer Nature Switzerland AG 2018 60G60, 60F05, 60H05, 6

[復(fù)制鏈接]
樓主: MOTE
21#
發(fā)表于 2025-3-25 05:02:21 | 只看該作者
Integration with Respect to Volatility Modulated Volterra Processeslculus. Indeed, the stochastic integral with respect to a volatility modulated Volterra process can be defined for a reasonably large class of (anticipative) stochastic integrand processes by a Skorohod stochastic integral and a classical Lebesgue integral over time. In both the integrals, an operat
22#
發(fā)表于 2025-3-25 11:18:35 | 只看該作者
23#
發(fā)表于 2025-3-25 14:10:37 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:38:54 | 只看該作者
Turbulence Modellingal theory of homogeneous turbulence in view of volatility modulated Volterra processes and ambit fields. After a review of the statistical theory due to Kolmogorov-Obukhov, with a particular emphasis on scaling laws, we discuss ambit fields and various subclasses and their relevance to turbulence. I
27#
發(fā)表于 2025-3-26 05:38:50 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:37 | 只看該作者
Forward Curve Modelling by Ambit Fieldsrward price modelling. Indeed, we state general ambit field models with drift, where the spatial dimension is the delivery time of the forward contract. The ambit sets will have a simple form in our setting, and we derive explicit no-arbitrage conditions for the drift in both arithmetic and geometri
29#
發(fā)表于 2025-3-26 12:58:03 | 只看該作者
Ambit Stochastics978-3-319-94129-5Series ISSN 2199-3130 Series E-ISSN 2199-3149
30#
發(fā)表于 2025-3-26 18:47:52 | 只看該作者
Erratum to: Die Herstellung der Emailsh focus on the temporal dependency structure. Several examples are introduced, with particular emphasis on Brownian semistationary processes having generalised hyperbolic marginal distribution. Apart from examples of stochastic volatility processes, we also discuss time change as a tool for volatility modulation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莫力| 靖西县| 商河县| 利津县| 宁波市| 巴林左旗| 许昌市| 西林县| 邯郸市| 定边县| 德江县| 张掖市| 龙口市| 东兴市| 永吉县| 南川市| 海门市| 苏尼特右旗| 沭阳县| 清苑县| 楚雄市| 桐柏县| 肃南| 武平县| 南木林县| 米泉市| 交口县| 慈利县| 邛崃市| 福贡县| 佛坪县| 石河子市| 自治县| 浙江省| 兴安县| 辉南县| 利辛县| 随州市| 宜城市| 天峨县| 桑日县|