找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Alice in Numberland; A Students’ Guide to John Baylis,Rod Haggarty Textbook 1988Latest edition John Baylis and Rod Haggarty 1988 Alice.Area

[復(fù)制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:19:49 | 只看該作者
,Some Infinite Surprises—in which some wild sets are tamed, and some nearly escape,centuries by other mathematicians. He was the source of most of the ideas, and for this reason the subject is relatively easy to tie down to its origins. We shall be adding a few remarks to give some historical colour to our story, but by the end of the chapter you will probably agree that the subject is quite colourful enough anyway!
22#
發(fā)表于 2025-3-25 08:06:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:06:36 | 只看該作者
,Graphs and Continuity—in which we arrange a marriage between Intuition and Rigour,he way space actually is. So far, mathematicians have been able to resolve any unexpected quirks of the rigorously defined concept of a continuous function more or less to everyone’s satisfaction. One of the founders of analysis, a Catholic priest, Bernhard Bolzano (1781–1848 ), when analysing the p
24#
發(fā)表于 2025-3-25 19:20:43 | 只看該作者
http://image.papertrans.cn/a/image/153331.jpg
25#
發(fā)表于 2025-3-25 20:28:43 | 只看該作者
https://doi.org/10.1007/978-3-540-27243-4: I’ve started to educate myself, Alice, as you suggested. I found a little book in the Red Queen’s library by some chap called Fibonacci. They had very quaint ways of describing themselves in those days: this book was … ‘by Leonardo, the everlasting rabbit breeder of Pisa’.
26#
發(fā)表于 2025-3-26 02:30:56 | 只看該作者
27#
發(fā)表于 2025-3-26 04:49:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:34:30 | 只看該作者
,Nests—in which the rationals give birth to the reals and the scene is set for arithmetic in ?,Deep in conversation, Alice and the Tweedle twins have wandered into an unfamiliar part of the forest.
29#
發(fā)表于 2025-3-26 13:23:30 | 只看該作者
30#
發(fā)表于 2025-3-26 18:17:54 | 只看該作者
,Psychomotorische Erregungszust?nde,, 2, 3, 4, …}. We think of counting as a very primitive notion firmly rooted in reality, yet already the innocent three dots in { 1, 2, 3, 4, …} may have taken us beyond reality into the realms of pure thought. The dots are usually interpreted as ‘a(chǎn)nd so on for ever’, which expresses our notion that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 邓州市| 绥化市| 乡宁县| 壤塘县| 永兴县| 宁德市| 平凉市| 临城县| 郯城县| 阿拉善盟| 扎赉特旗| 濮阳县| 临朐县| 运城市| 武隆县| 繁昌县| 台中县| 满洲里市| 长宁县| 融水| 财经| 若尔盖县| 磐石市| 阿鲁科尔沁旗| 边坝县| 银川市| 灵宝市| 南江县| 营山县| 嘉义市| 上饶市| 云阳县| 钟山县| 塔河县| 沙田区| 海门市| 河津市| 巴彦县| 武冈市| 西吉县|