找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Machine Learning Paradigms; Jyotsna Kumar Mandal,Somnath Mukhopadhyay,Kousik D Book 2020 Springer Nature Singapore Pte Ltd.

[復制鏈接]
查看: 31399|回復: 46
樓主
發(fā)表于 2025-3-21 19:23:39 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithms in Machine Learning Paradigms
影響因子2023Jyotsna Kumar Mandal,Somnath Mukhopadhyay,Kousik D
視頻videohttp://file.papertrans.cn/154/153280/153280.mp4
發(fā)行地址Discusses machine learning applications.Includes a wide variety of problems using learning algorithms along with applications.Comprises chapters from experts in the field
學科分類Studies in Computational Intelligence
圖書封面Titlebook: Algorithms in Machine Learning Paradigms;  Jyotsna Kumar Mandal,Somnath Mukhopadhyay,Kousik D Book 2020 Springer Nature Singapore Pte Ltd.
影響因子.This book presents studies involving algorithms in the machine learning paradigms. It discusses a variety of learning problems with diverse applications, including prediction, concept learning, explanation-based learning, case-based (exemplar-based) learning, statistical rule-based learning, feature extraction-based learning, optimization-based learning, quantum-inspired learning, multi-criteria-based learning and hybrid intelligence-based learning...?.
Pindex Book 2020
The information of publication is updating

書目名稱Algorithms in Machine Learning Paradigms影響因子(影響力)




書目名稱Algorithms in Machine Learning Paradigms影響因子(影響力)學科排名




書目名稱Algorithms in Machine Learning Paradigms網(wǎng)絡(luò)公開度




書目名稱Algorithms in Machine Learning Paradigms網(wǎng)絡(luò)公開度學科排名




書目名稱Algorithms in Machine Learning Paradigms被引頻次




書目名稱Algorithms in Machine Learning Paradigms被引頻次學科排名




書目名稱Algorithms in Machine Learning Paradigms年度引用




書目名稱Algorithms in Machine Learning Paradigms年度引用學科排名




書目名稱Algorithms in Machine Learning Paradigms讀者反饋




書目名稱Algorithms in Machine Learning Paradigms讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:16 | 只看該作者
https://doi.org/10.1007/978-3-642-91468-3indicative parameters for disease diagnosis. Finally, the major vessels are classified as artery and vein sets to differentiate from the newly generated and unwanted blood vessels. This network was trained with the training and testing images of DRIAVE/RITE database for segmentation and artery vein
板凳
發(fā)表于 2025-3-22 00:38:10 | 只看該作者
https://doi.org/10.1007/978-3-642-91468-3 the expensive hardware resources by companies and institutes. However, to satisfy the need for resources of the users on time, Cloud Service Provider (CSP) must have to maintain the Quality of Service (QoS). Service Level Agreement (SLA) is done between the Datacenters and its end users. Minimizati
地板
發(fā)表于 2025-3-22 07:10:05 | 只看該作者
Der Einphasenwechselstrommotor,odes for the future time frame based on their past observation. For this purpose, we use the Elman recurrent neural network (ERNN)-based learning tool to determine the behavior of the mobile nodes of the network in the future time frame.
5#
發(fā)表于 2025-3-22 12:46:38 | 只看該作者
https://doi.org/10.1007/978-3-642-86125-3, these solutions also require an observed attractor to check the similarity with the experimental attractor. This research overcomes the aforementioned constraint and flaw of the past models. In this research, a Real Coded Genetic Algorithm(RCGA) based optimization technique for optimizing the init
6#
發(fā)表于 2025-3-22 15:06:44 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:15:57 | 只看該作者
A Linear Regression-Based Resource Utilization Prediction Policy for Live Migration in Cloud Comput the expensive hardware resources by companies and institutes. However, to satisfy the need for resources of the users on time, Cloud Service Provider (CSP) must have to maintain the Quality of Service (QoS). Service Level Agreement (SLA) is done between the Datacenters and its end users. Minimizati
9#
發(fā)表于 2025-3-23 03:02:41 | 只看該作者
Stable Neighbor-Node Prediction with Multivariate Analysis in Mobile Ad Hoc Network Using RNN Modelodes for the future time frame based on their past observation. For this purpose, we use the Elman recurrent neural network (ERNN)-based learning tool to determine the behavior of the mobile nodes of the network in the future time frame.
10#
發(fā)表于 2025-3-23 09:35:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东海县| 阿尔山市| 开鲁县| 剑阁县| 遂川县| 嘉黎县| 沾化县| 乐平市| 天台县| 若尔盖县| 宜宾市| 江陵县| 集安市| 平乐县| 红安县| 邳州市| 苍溪县| 永川市| 通河县| 邵东县| 高碑店市| 成武县| 洞口县| 南丰县| 镇康县| 怀仁县| 宝山区| 桂东县| 陕西省| 敦化市| 淮阳县| 墨脱县| 大埔区| 湛江市| 普兰店市| 松阳县| 云林县| 宝山区| 临夏县| 仁寿县| 东台市|