找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Algebraic Geometry and Applications; Laureano González-Vega,Tomás Recio Conference proceedings 1996 Birkh?user Verlag, P.O.

[復(fù)制鏈接]
樓主: deliberate
41#
發(fā)表于 2025-3-28 18:06:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:39 | 只看該作者
Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula,e is the linear form . associating to . (reduced modulo .) its coefficient of degree . - 1 (where . is the degree of .). When the polynomial . has only simple roots the Kronecker symbol (or global residue) of . is the number . and the signature of the quadratic form .(..) is again the Cauchy index of ..
43#
發(fā)表于 2025-3-29 01:17:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:29:33 | 只看該作者
Mixed monomial bases, the Newton polytopes .. := conv(.. ) . The objective of this note is to construct explicit .-bases for A, using the combinatorial technique of mixed subdivisions of the Minkowski sum . := .. + ... + ...
45#
發(fā)表于 2025-3-29 10:45:17 | 只看該作者
46#
發(fā)表于 2025-3-29 14:57:56 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:47 | 只看該作者
https://doi.org/10.1007/978-3-322-93570-0te set of parameters defines the status of the joint. For example, for a rotary joint the rotation angle fully defines the joint. The independent parameters of the joints will be called the . of the mechanism.
48#
發(fā)表于 2025-3-29 21:38:57 | 只看該作者
Studien zur Schul- und Bildungsforschunggions) that yield identical aspects. The change in aspect at the boundary between regions is called a visual event. The maximal regions and the associated aspects form the nodes of an aspect graph, whose arcs correspond to the visual event boundaries between adjacent regions.
49#
發(fā)表于 2025-3-30 00:14:48 | 只看該作者
https://doi.org/10.1007/978-3-322-93570-0ety of displacements and give its multiplicity, which allows us to bound the number of solutions in the direct kinematic problem of a parallel robot and in the problem of reconstruction from points in vision.
50#
發(fā)表于 2025-3-30 06:54:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林右旗| 斗六市| 荆州市| 海门市| 襄城县| 潮安县| 巴东县| 清水河县| 荥经县| 西充县| 百色市| 民权县| 张北县| 贵阳市| 海盐县| 丹凤县| 济南市| 元氏县| 德保县| 奇台县| 安庆市| 洪江市| 太谷县| 沙坪坝区| 泽州县| 怀化市| 平乐县| 甘孜| 乐安县| 托克逊县| 女性| 泰州市| 共和县| 扬州市| 济南市| 颍上县| 禄丰县| 香港| 阳春市| 祁连县| 崇州市|