找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Sparse Linear Systems; Jennifer Scott,Miroslav T?ma Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023

[復(fù)制鏈接]
樓主: 照相機(jī)
11#
發(fā)表于 2025-3-23 13:22:31 | 只看該作者
https://doi.org/10.1007/978-3-476-03748-0This chapter considers the LU factorization of a general nonsymmetric nonsingular sparse matrix .. In practice, numerical pivoting for stability and/or ordering of . to limit fill-in in the factors is often needed and the computed factorization is then of a permuted matrix .. Pivoting is discussed in Chapter . and ordering algorithms in Chapter ..
12#
發(fā)表于 2025-3-23 15:08:00 | 只看該作者
Sparse Matrices and Their Graphs,Many sparse matrix algorithms exploit the close relationship between matrices and graphs. We make no assumption regarding the reader’s prior knowledge of graph theory. The purpose of this chapter is to summarize basic concepts from graph theory that will be exploited later and to establish the notation and terminology that will be used throughout.
13#
發(fā)表于 2025-3-23 20:19:40 | 只看該作者
Introduction to Matrix Factorizations,This chapter introduces the basic concepts of Gaussian elimination and its formulation as a matrix factorization that can be expressed in a number of mathematically equivalent but algorithmically different ways.
14#
發(fā)表于 2025-3-24 00:42:22 | 只看該作者
Sparse Cholesky Solver: The Symbolic Phase,This chapter focuses on the symbolic phase of a sparse Cholesky solver. The sparsity pattern . of the symmetric positive definite (SPD) matrix . is used to determine the nonzero structure of the Cholesky factor . without computing the numerical values of the nonzeros.
15#
發(fā)表于 2025-3-24 04:21:45 | 只看該作者
Sparse LU Factorizations,This chapter considers the LU factorization of a general nonsymmetric nonsingular sparse matrix .. In practice, numerical pivoting for stability and/or ordering of . to limit fill-in in the factors is often needed and the computed factorization is then of a permuted matrix .. Pivoting is discussed in Chapter . and ordering algorithms in Chapter ..
16#
發(fā)表于 2025-3-24 07:00:12 | 只看該作者
Jennifer Scott,Miroslav T?maThis book is open access, which means that you have free and unlimited access.This monograph presents factorization algorithms for solving large sparse linear systems of equations.It unifies the study
17#
發(fā)表于 2025-3-24 11:50:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:49:17 | 只看該作者
https://doi.org/10.1007/978-3-658-01483-4em we are interested in is that of solving linear systems of equations .?=?., where the square sparse matrix . and the vector . are given and the solution vector . is required. Such systems arise in a huge range of practical applications, including in areas as diverse as quantum chemistry, computer
19#
發(fā)表于 2025-3-24 20:05:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:45 | 只看該作者
https://doi.org/10.1007/978-3-663-20180-9orage and the work involved in the computation of the factors and in their use during the solve phase it is generally necessary to reorder (permute) the matrix before the factorization commences. The complexity of the most critical steps in the factorization is highly dependent on the amount of fill
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九寨沟县| 宜阳县| 龙陵县| 枣强县| 漳州市| 历史| 屯门区| 额济纳旗| 通许县| 黄浦区| 辽阳市| 汾西县| 河西区| 阿瓦提县| 永善县| 讷河市| 河东区| 灵川县| 桂东县| 那坡县| 宁波市| 高雄县| 天峻县| 武穴市| 商南县| 革吉县| 景东| 曲阜市| 沈阳市| 林州市| 抚宁县| 广南县| 且末县| 赣榆县| 合江县| 长宁区| 上犹县| 湘西| 班戈县| 金山区| 崇明县|