找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; Richard Tolimieri,Chao Lu,Myoung An Book 1997Latest edition Springer-Verlag New

[復(fù)制鏈接]
樓主: 動詞
51#
發(fā)表于 2025-3-30 08:17:59 | 只看該作者
52#
發(fā)表于 2025-3-30 16:06:39 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:02 | 只看該作者
Good-Thomas PFA,e multiplicative structure can be applied, in the case of transform size . = ., where . and . are relatively prime, to design an FT algorithm that is similar in structure to these additive algorithms but no longer requires the twiddle factor multiplication. The idea is due to Good [2] in 1958 and Th
54#
發(fā)表于 2025-3-30 20:43:04 | 只看該作者
Linear and Cyclic Convolutions, convolution is to zero-tap, turning the linear convolution into a cyclic convolution, and to use the convolution theorem, which replaces the cyclic convolution by an FT of the corresponding size. In the last ten years, theoretically better convolution algorithms have been developed. The Winograd Sm
55#
發(fā)表于 2025-3-31 03:25:32 | 只看該作者
Agarwal-Cooley Convolution Algorithm,hods are required. First, as discussed in chapter 6, these algorithms keep the number of required multiplications small, but they can require many additions. Also, each size requires a different algorithm. There is no uniform tructure that can be repeatedly called upon. In this chapter, a technique
56#
發(fā)表于 2025-3-31 07:10:21 | 只看該作者
57#
發(fā)表于 2025-3-31 12:37:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建瓯市| 闻喜县| 榕江县| 四川省| 六枝特区| 布尔津县| 临江市| 彰化县| 阿荣旗| 冀州市| 甘孜县| 南汇区| 和顺县| 周至县| 宜章县| 明光市| 密云县| 鸡东县| 昌江| 铁力市| 湄潭县| 连云港市| 吴江市| 容城县| 阿坝| 会同县| 晋城| 和田市| 且末县| 德庆县| 贵南县| 忻州市| 南京市| 萍乡市| 亚东县| 西峡县| 金秀| 黑山县| 固始县| 拉孜县| 札达县|