找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Models for the Web Graph; 16th International W Konstantin Avrachenkov,Pawe? Pra?at,Nan Ye Conference proceedings 2019 Spring

[復(fù)制鏈接]
樓主: lutein
31#
發(fā)表于 2025-3-26 22:24:23 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:53 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:57 | 只看該作者
34#
發(fā)表于 2025-3-27 11:52:29 | 只看該作者
Using Synthetic Networks for Parameter Tuning in Community Detection,ructural properties and communities of various nature. As a result, it is hard (or even impossible) to develop one algorithm suitable for all datasets. A standard machine learning tool is to consider a parametric algorithm and choose its parameters based on the dataset at hand. However, this approac
35#
發(fā)表于 2025-3-27 15:20:18 | 只看該作者
Efficiency of Transformations of Proximity Measures for Graph Clustering,formed with a number of functions including the logarithmic function, the power function, and a family of activation functions. Transformations are tested in experiments in which several classical datasets are clustered using the .-Means, Ward, and the spectral method. The analysis of experimental r
36#
發(fā)表于 2025-3-27 18:34:22 | 只看該作者
Almost Exact Recovery in Label Spreading,ve high accuracy clustering using efficient computational procedures. Our main goal is to provide a theoretical justification why the graph-based semi-supervised learning works very well. Specifically, for the Stochastic Block Model in the moderately sparse regime, we prove that popular semi-supervi
37#
發(fā)表于 2025-3-28 01:21:31 | 只看該作者
38#
發(fā)表于 2025-3-28 03:34:40 | 只看該作者
39#
發(fā)表于 2025-3-28 09:48:49 | 只看該作者
Estimating the Parameters of the Waxman Random Graph, thus less numerous. The model has been in continuous use for over three decades with many attempts to match parameters to real networks, but only a few cases where a formal estimator was used. Even then the performance of the estimator was not evaluated. This paper presents both the first evaluatio
40#
發(fā)表于 2025-3-28 12:33:27 | 只看該作者
Understanding the Effectiveness of Data Reduction in Public Transportation Networks, a selected station. Although this problem is NP-hard in general, real-world instances are regularly solved almost completely by a set of simple reduction rules. To explain this behavior, we view transportation networks as hitting set instances and identify two characteristic properties, locality an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松滋市| 巩留县| 柞水县| 唐山市| 宝丰县| 临湘市| 夏河县| 阿勒泰市| 靖州| 龙里县| 射洪县| 灌云县| 新邵县| 梅州市| 视频| 博客| 永安市| 南康市| 航空| 南投县| 东乡族自治县| 苗栗市| 辽阳县| 隆昌县| 任丘市| 塘沽区| 万荣县| 绥芬河市| 河北区| 博乐市| 淳安县| 徐汇区| 五常市| 鹤壁市| 玛沁县| 临清市| 千阳县| 双柏县| 武定县| 高台县| 五家渠市|